• Title/Summary/Keyword: Multi coating

Search Result 287, Processing Time 0.027 seconds

Fabrication and Property Evaluation of Tubular Segmented-in-Series Solid Oxide Fuel Cell (SOFC) (세그먼트 관형 SOFC의 제작 및 특성 평가)

  • Yun, Ui-Jin;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul;Han, Kyoo-Seung
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.562-566
    • /
    • 2012
  • A novel design of tubular segmented-in-series(SIS) solid oxide fuel cell (SOFC) sub module was presented in this paper. The tubular ceramic support was fabricated by the extrusion technique. The NiO-YSZ anode and the yttria-stabilized zirconia (YSZ) electrolyte were deposited onto the ceramic support by dip coating method. After sintering at $1350^{\circ}C$ for 5 h, a dense and crack-free YSZ film was successfully fabricated. Also, the multi-layered cathode composed of LSM-YSZ composite, LSM and LSCF were coated onto the sintered ceramic support by dip coating method and sintered at $1150^{\circ}C$. The performance of the tubular SIS SOFC cell and sub module electrically connected by the Ag-glass interconnect was measured and analysed with different fuel flow and operating temperature.

Preparation and characteristics of $Pb_{x}Ti_{1-x}$$O_2$(x = 0.1) Thin Film ($Pb_{x}Ti_{1-x}$$O_2$(x = 0.1) 박막의 제조 및 특성)

  • 김상수;권식철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.6
    • /
    • pp.418-424
    • /
    • 2000
  • Pure $TiO_2$and 10 mol % Pb-doped $TiO_2(Pb_xTi_{1-x}O_2$(x = 0.1)) powder and thin films have been prepared by the sol-gel method. Titanium isopropoxide and ethanol are used for pure $TiO_2$, lead acetate trihydrate and titanium triisopropoxide monoacethylacetonate are used for Pb-doped $TiO_2$, respectively. Films are coated on p-type Si(100) wafer and ITO glass substrates by the sol-gel spin-coating method. The powder and multi-coated films are annealed at different temperature (400~$800^{\circ}C$) for phase formation and crystallization. TGA/DTA, XRD analysis, SEM and UV-visible transmission spectroscopy have been used to study the characteristics of the powder and films. XRD results show that the films are polycrystalline, anatase type and oriented predominantly to the A(101) plane. A slight shift in the d-spacing for the Pb-doped film indicates the incorporation of the Pb into $TiO_2$lattice. A shift of the absorption wavelength in the transmission spectrum towards longer wavelength has been observed about $Pb_xT_{1-x}O_2$(x = 0.1) thin film, which indicates a decrease in the bandgap of $TiO_2$upon Pb-doping.

  • PDF

Sol-gel deposited TiInO thin-films transistor with Ti effect

  • Kim, Jung-Hye;Son, Dae-Ho;Kim, Dae-Hwan;Kang, Jin-Kyu;Ha, Ki-Ryong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.200-200
    • /
    • 2010
  • In recent times, metal oxide semiconductors thin films transistor (TFT), such as zinc and indium based oxide TFTs, have attracted considerable attention because of their several advantageous electrical and optical properties. There are many deposition methods for fabrication of ZnO-based materials such as chemical vapor deposition, RF/DC sputtering and pulsed laser deposition. However, these vacuum process require expensive equipment and result in high manufacturing costs. Also, the methods is difficult to fabricate various multicomponent oxide semiconductor. Recently, several groups report solution processed metal oxide TFTs for low cost and non vacuum process. In this study, we have newly developed solution-processed TFTs based on Ti-related multi-component transparent oxide, i. e., InTiO as the active layer. We propose new multicomponent oxide, Titanium indium oxide(TiInO), to fabricate the high performance TFT through the sol-gel method. We investigated the influence of relative compositions of Ti on the electrical properties. Indium nitrate hydrate [$In(NO^3).xH_2O$] and Titanium isobutoxide [$C_{16}H_{36}O_4Ti$] were dissolved in acetylacetone. Then monoethanolamine (MEA) and acetic acid ($CH_3COOH$) were added to the solution. The molar concentration of indium was kept as 0.1 mol concentration and the amount of Ti was varied according to weighting percent (0, 5, 10%). The complex solutions become clear and homogeneous after stirring for 24 hours. Heavily boron (p+) doped Si wafer with 100nm thermally grown $SiO_2$ serve as the gate and gate dielectric of the TFT, respectively. TiInO thin films were deposited using the sol-gel solution by the spin-coating method. After coating, the films annealed in a tube furnace at $500^{\circ}C$ for 1hour under oxygen ambient. The 5% Ti-doped InO TFT had a field-effect mobility $1.15cm^2/V{\cdot}S$, a threshold voltage of 4.73 V, an on/off current ratio grater than $10^7$, and a subthreshold slop of 0.49 V/dec. The 10% Ti-doped InO TFT had a field-effect mobility $1.03\;cm^2/V{\cdot}S$, a threshold voltage of 1.87 V, an on/off current ration grater than $10^7$, and a subthreshold slop of 0.67 V/dec.

  • PDF

Polymer Eyeglass Lens with Ultraviolet & High-Energy Visible Light Blocking Function for Eye Health (자외선 및 고에너지 가시광 차단 기능을 갖는 눈 건강을 위한 폴리머 안경렌즈)

  • Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.10-15
    • /
    • 2020
  • Ultraviolet rays, which have wavelengths smaller than 400 nm, are very harmful to the eyes. Recently, high-energy visible light was also revealed to be harmful to retinal cells. Therefore, polymer eyeglass lenses that can block UV and high-energy visible light are needed for eye health. In this study, high-refractive-index polymer eyeglass lens, n=1.67, were manufactured using the injection-mold method with the m-xylene diisocyanate monomer, 2,3-bis((2-mercaptoethyl)thio)-1-propanethiol monomer, benzotriazole UV absorber, release of alkyl phosphoric ester, dye mixture of CI solvent violet 13, and catalyst of dibutyltin dichloride mixture. A multi-layer anti-reflection coating was applied to manufactured polymer eyeglass lenses for both sides using an E-beam evaporation system. The optical properties of the manufactured lenses with the UV and high-energy visible light-blocking function were analyzed by UV-visible spectrophotometry. As a result, the polymer eyeglass lens with a UV absorber of 0.5 wt. % blocked 99% of UV and high-energy visible light shorter than 411 nm. The average transmittance of the polymer eyeglass lens with a UV absorber of 0.5wt.% was 97.9% in the range of 460 ~ 660 nm for photopic eye sensitivity higher than 10%. Therefore, clear image acquisition in photopic vision is possible.

Nano-patterning technology using an UV-NIL method (UV-NIL(Ultraviolet-Nano-Imprinting-Lithography) 방법을 이용한 나노 패터닝기술)

  • 심영석;정준호;손현기;신영재;이응숙;최성욱;김재호
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.1
    • /
    • pp.39-45
    • /
    • 2004
  • Ultraviolet-nanoimprint lithography (UV-NIL) is a promising method for cost-effectively defining nanoscale structures at room temperature and low pressure. A 5${\times}$5${\times}$0.09 in. quartz stamp is fabricated using the etch process in which a Cr film was employed as a hard mask for transferring nanostructures onto the quartz plate. FAS(Fluoroalkanesilane) is used as a material for anti-adhesion surface treatment on the stamp and a thin organic film to improve adhesion on a wafer is formed by spin-coating. The low viscosity resin droplets with a nanometer scale volume are dispensed on the whole area of the coated wafer. The UV-NIL experiments have been performed using the EVG620-NIL. 370 nm - 1 m features on the stamp have been transferred to the thin resin layer on the wafer using the multi-dispensing method and UV-NIL process. We have measured the imprinted patterns and residual layer using SEM and AFM to evaluate the potential of the process.

The Theoretical Investigation of Phased Array Guided Waves (위상배열 유도초음파 검사의 이론적 고찰)

  • Lee, Jae-Sun;Cho, Youn-Ho;Achenbach, Jan D.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.367-373
    • /
    • 2011
  • Guided waves inspection techniques that are different with inspection technique by bulk waves are widely used in pipe line evaluation due to advantages of long distance inspection. However, most of pipe lines at industrial fields are buried and/or coated. In this case, due to the attenuation effect from soil and/or coating material, there are a lot of difficulty on inspection by conventional ultrasonic technique. In this paper, guided waves propagating patterns are calculated with respect to excitation mode by Normal Mode Expansion(NME). Guided waves patterns based on excited by single transducer and guided wave focusing technique have employed to analyze focusing pattern on a pipe. A longitudinal mode and high order flexural modes are used with various number of transducers to determine sensitivity. Guided waves energy excited by multi transducer with focusing algorithm was successfully focused at a desired point.

Application of Nano Coating to ACSR conductor for the Protection of Transmission lines against Solar Storms, Surface Flashovers, Corona and Over voltages

  • Selvaraj, D. Edison;Mohanadasse, K.;Sugumaran, C. Pugazhendhi;Vijayaraj, R.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2070-2076
    • /
    • 2015
  • Nano composite materials were multi-constituent combinations of nano dimensional phases with distinct differences in structure, chemistry and properties. Nano particles were less likely to create large stress concentrations and thereby can avoid the compromise of the material ductility while improve other mechanical properties. Corona discharge was an electrical discharge. The ionization of a fluid surrounding a conductor was electrically energized. This discharge would occur when the strength of the electric field around the conductor was high enough to form a conductive region, but not high enough to cause electrical breakdown or arcing to nearby objects. This paper shows all the studies done on the preparation of nano fillers. Special attention has given to the ACSR transmission line conductor, TiO2 nano fillers and also to the evaluation of corona resistance on dielectric materials discussed in detail. The measurement of the dielectric properties of the nano fillers and the parameters influencing them were also discussed in the paper. Corona discharge test reveals that in 0%N ACSR sample corona loss was directly proportional to the applied line voltage. No significant change in corona loss between 0%N and 1%N. When TiO2 nano filler concentration was increased up to 10%N fine decrement in corona loss was found when compared to base ACSR conductor, corona loss was decreased by 40.67% in 10%N ACSR sample. It was also found from the surface conditions test that inorganic TiO2 nano filler increases the key parameters like tensile strength and erosion depth.

Solar Cell Efficiency Improvement using a Pre-deposition Temperature Optimization in The Solar Cell Doping Process (도핑 공정에서의 Pre-deposition 온도 최적화를 이용한 Solar Cell 효율 개선)

  • Choi, Sung-Jin;Yoo, Jin-Su;Yoo, Kwon-Jong;Han, Kyu-Min;Kwon, Jun-Young;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.244-244
    • /
    • 2010
  • Doping process of crystalline silicon solar cell process is very important which is as influential on efficiency of solar. Doping process consists of pre -deposition and diffusion. Each of these processes is important in the process temperature and process time. Through these process conditions variable, p-n junction depth can be controled to low and high. In this paper, we studied a optimized doping pre-deposition temperature for high solar cell efficiency. Using a $200{\mu}m$ thickness multi-crystalline silicon wafer, fixed conditions are texture condition, sheet resistance($50\;{\Omega}/sq$), ARC thickness(80nm), metal formation condition and edge isolation condition. The three variable conditions of pre-deposition temperature are $790^{\circ}C$, $805^{\circ}C$ and $820^{\circ}C$. In the $790^{\circ}C$ pre-deposition temperature, we achieved a best solar cell efficiency of 16.2%. Through this experiment result, we find a high efficiency condition in a low pre-deposition temperature than the high pre-deposition temperature. We optimized a pre-deposition temperature for high solar cell efficiency.

  • PDF

Design of pixelated phase gratings for optical image generation (광영상 발생을 위한 화소형 위상격자의 설계 및 제작)

  • Lee, Deug-Ju;Kim, Nam;Lee, Kwon-Yeon;Eun, Jae-Jeong
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.5
    • /
    • pp.132-141
    • /
    • 1996
  • The pixelated phase grating has been studied as a kind of diffraction gratings splitting and input beam into multiple spots. It consists of regular size cells which produce phase delays, and each cell provokes the phase delay up to sixteen levels. We have compared and analyzed the characteristics of multi-level phase gratings, laying streess on efficiency and resulted pattern. Experimental resutls obtained form fabricated grating have been presented, and the real-time method using a liquid-crystal spatial light modulator has been demonstrated through experiments. Gratings making meams with specific intensities have been designed and optical images have been generated by them. In order to specific intensities have been designed and optical images have been genrated by them. In order to decide the phase delay of each cell, optimization conditon consists of diffraction efficiency and target values. One period of phase gratings fabricated with surface relief was less than 256${\mu}m{\times}256{\mu}m$ and size of each cell was 1${\mu}m{\times}1{\mu}m$ surface relief grating has been made by coating photoresist on the glass plate, writing information pattern by Ar laser and developing it. in the experiment for real-tiem processing liquid-crystal display of epson video projector has been used.

  • PDF

Vapor Permeation Characteristics of TiO2 Composite Membranes Prepared on Porous Stainless Steel Support by Sol-Gel Method

  • Lee, Yoon-Gyu;Lee, Dong-Wook;Kim, Sang-Kyoon;Sea, Bong-Kuk;Youn, Min-Young;Lee, Kwan-Young;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.687-693
    • /
    • 2004
  • Composite membranes with a titania layer were prepared by soaking-rolling method with the titania sol of nanoparticles formed in the sol-gel process and investigated regarding the vapor permeation of various organic mixtures. The support modification was conducted by pressing $SiO_2$ xerogel of 500 nm in particle size under 10 MPa on the surface of a porous stainless steel (SUS) substrate and designed the multi-layered structure by coating the intermediate layer of ${\gamma}-Al_2O_3$. Microstructure of titania membrane was affected by heat-treatment and synthesis conditions of precursor sol, and titania formed at calcination temperature of 300$^{\circ}C$ with sol of [$H^+$]/[TIP]=0.3 possessed surface area of 210 $m^2$/g, average pore size of 1.25 nm. The titania composite membrane showed high $H_2/N_2$ selectivity and water/ethanol selectivity as 25-30 and 50-100, respectively. As a result of vapor permeation for water-alcohol and alcohol-alcohol mixture, titania composite membrane showed water-permselective and molecular-sieve permeation behavior. However, water/methanol selectivity of the membrane was very low because of chemical affinity of permeants for the membrane by similar physicochemical properties of water and methanol.