• Title/Summary/Keyword: Multi Object Detection

Search Result 236, Processing Time 0.029 seconds

Set-theoretic multi-resolution approach to generic partial and background information-based object detection (집합기반 다해상도 접근을 통한 포괄적 정보를 이용한 물체탐지에 관한 연구)

  • Kim, Yang-Woo;Kim, Woon-Kyung
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1039-1040
    • /
    • 2008
  • Multi-resolution approach to object detection wherein all entities including the partial information and background knowledge are modeled in set-theoretic terms whereby associated processing are formulated via set-theoretic operations is investigated. The generic set-theoretic paradigm is then applied to particular problems of detecting malfunctions in semiconductor fabrication process wherein the computational- and storage- efficiencies as enabled by morphological signal processing further coupled with flexibilities enabled by multi-resolution approach leads to a scalable paradigm in which the desired performance can be obtained on-demand fashion.

  • PDF

3D Coordinates Acquisition by using Multi-view X-ray Images (다시점 X선 영상을 이용한 3차원 좌표 획득)

  • Yi, Sooyeong;Rhi, Jaeyoung;Kim, Soonchul;Lee, Jeonggyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.886-890
    • /
    • 2013
  • In this paper, a 3D coordinates acquisition method for a mechanical assembly is developed by using multiview X-ray images. The multi-view X-ray images of an object are obtained by a rotary table. From the rotation transformation, it is possible to obtain the 3D coordinates of corresponding edge points on multi-view X-ray images by triangulation. The edge detection algorithm in this paper is based on the attenuation characteristic of the X-ray. The 3D coordinates of the object points are represented on a graphic display, which is used for the inspection of a mechanical assembly.

A Study on an Automatic Multi-Focus System for Cell Observation

  • Park, Jaeyoung;Lee, Sangjoon
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.47-54
    • /
    • 2019
  • This study is concerned with the mechanism and structure of an optical microscope and an automatic multi-focus algorithm for automatically selecting sharp images from multiple foci of a cell. To obtain precise cell images quickly, a z-axis actuator with a resolution of $0.1{\mu}m$ was designed to control an optical microscope Moreover, a lighting control system was constructed to select the color and brightness of light that best suit the object being viewed. Cell images are captured by the instrument and the sharpness of each image is determined using Gaussian and Laplacian filters. Next, cubic spline interpolation and peak detection algorithms are applied to automatically find the most vivid points among multiple images of a single object. A cancer cell imaging experiment using propidium iodide staining confirmed that a sharp multipoint image can be obtained using this microscope. The proposed system is expected to save time and effort required to extract suitable cell images and increase the convenience of cell analysis.

Scale-aware Faster R-CNN for Caltech Pedestrian Detection (Caltech 보행자 감지를 위한 Scale-aware Faster R-CNN)

  • Byambajav, Batkhuu;Alikhanov, Jumabek;Jo, Geun-Sik
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.506-509
    • /
    • 2016
  • We present real-time pedestrian detection that exploit accuracy of Faster R-CNN network. Faster R-CNN has shown to success at PASCAL VOC multi-object detection tasks, and their ability to operate on raw pixel input without the need to design special features is very engaging. Therefore, in this work we apply and adjust Faster R-CNN to single object detection, which is pedestrian detection. The drawback of Faster R-CNN is its failure when object size is small. Previously, small sized object problem was solved by Scale-aware Network. We incorporate Scale-aware Network to Faster R-CNN. This made our method Scale-aware Faster R-CNN (DF R-CNN) that is both fast and very accurate. We separated Faster R-CNN networks into two sub-network, that is one for large-size objects and another one for small-size objects. The resulting approach achieves a 28.3% average miss rate on the Caltech Pedestrian detection benchmark, which is competitive with the other best reported results.

Object Dimension Estimation for Remote Visual Inspection in Borescope Systems

  • Kim, Hyun-Sik;Park, Yong-Suk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4160-4173
    • /
    • 2019
  • Borescopes facilitate the inspection of areas inside machines and systems that are not directly accessible for visual inspection. They offer real-time, up-close access to confined and hard-to-access spaces without having to dismantle or destructure the object under inspection. Borescopes are ideal instruments for routine maintenance, quality inspection and monitoring of systems and structures. The main application being fault or defect detection, it is useful to have measuring capability to quantify object dimensions in a target area. High-end borescopes use multi-optic solutions to provide measurement information of viewed objects. Multi-optic solutions can provide accurate measurements at the expense of structural complexity and cost increase. Measuring functionality is often unavailable in low-end, single camera borescopes. In this paper, a single camera measurement solution that enables the size estimation of viewed objects is proposed. The proposed solution computes and overlays a scaled grid of known spacing value over the screen view, enabling the human inspector to estimate the size of the objects in view. The proposed method provides a simple means of measurement that is applicable to low-end borescopes with no built-in measurement capability.

Consecutive-Frame Super-Resolution considering Moving Object Region

  • Cho, Sung Min;Jeong, Woo Jin;Jang, Kyung Hyun;Choi, Byung In;Moon, Young Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.3
    • /
    • pp.45-51
    • /
    • 2017
  • In this paper, we propose a consecutive-frame super-resolution method to tackle a moving object problem. The super-resolution is a method restoring a high resolution image from a low resolution image. The super-resolution is classified into two types, briefly, single-frame super-resolution and consecutive-frame super-resolution. Typically, the consecutive-frame super-resolution recovers a better than the single-frame super-resolution, because it use more information from consecutive frames. However, the consecutive-frame super-resolution failed to recover the moving object. Therefore, we proposed an improved method via moving object detection. Experimental results showed that the proposed method restored both the moving object and the background properly.

Implementation of Moving Object Recognition based on Deep Learning (딥러닝을 통한 움직이는 객체 검출 알고리즘 구현)

  • Lee, YuKyong;Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.67-70
    • /
    • 2018
  • Object detection and tracking is an exciting and interesting research area in the field of computer vision, and its technologies have been widely used in various application systems such as surveillance, military, and augmented reality. This paper proposes and implements a novel and more robust object recognition and tracking system to localize and track multiple objects from input images, which estimates target state using the likelihoods obtained from multiple CNNs. As the experimental result, the proposed algorithm is effective to handle multi-modal target appearances and other exceptions.

Integration of Multi-scale CAM and Attention for Weakly Supervised Defects Localization on Surface Defective Apple

  • Nguyen Bui Ngoc Han;Ju Hwan Lee;Jin Young Kim
    • Smart Media Journal
    • /
    • v.12 no.9
    • /
    • pp.45-59
    • /
    • 2023
  • Weakly supervised object localization (WSOL) is a task of localizing an object in an image using only image-level labels. Previous studies have followed the conventional class activation mapping (CAM) pipeline. However, we reveal the current CAM approach suffers from problems which cause original CAM could not capture the complete defects features. This work utilizes a convolutional neural network (CNN) pretrained on image-level labels to generate class activation maps in a multi-scale manner to highlight discriminative regions. Additionally, a vision transformer (ViT) pretrained was treated to produce multi-head attention maps as an auxiliary detector. By integrating the CNN-based CAMs and attention maps, our approach localizes defective regions without requiring bounding box or pixel-level supervision during training. We evaluate our approach on a dataset of apple images with only image-level labels of defect categories. Experiments demonstrate our proposed method aligns with several Object Detection models performance, hold a promise for improving localization.

A Study on Detection of Deforested Land Using Aerial Photographs (항공사진을 이용한 훼손 산지 탐지 연구)

  • Ham, Bo Young;Lee, Chun Yong;Byun, Hye Kyung;Min, Byoung Keol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.3
    • /
    • pp.11-17
    • /
    • 2013
  • With high social demands for the diverse utilizations of forest lands, the illegal forest land use changes have increased. We studied change detection technique to detect changes in forest land use using an object-oriented segmentation of RED bands differencing in multi-temporal aerial photographs. The new object-oriented segmentation method consists of the 5 steps, "Image Composite - Segmentation - Reshaping - Noise Remover - Change Detection". The method enabled extraction of deforested objects by selecting a suitable threshold to determine whether the objects was divided or merged, based on the relations between the objects, spectral characteristics and contextual information from multi-temporal aerial photographs. The results found that the object-oriented segmentation method detected 12% of changes in forest land use, with 96% of the average detection accuracy compared by visual interpretation. Therefore this research showed that the spatial data by the object-oriented segmentation method can be complementary to the one by a visual interpretation method, and proved the possibility of automatically detecting and extracting changes in forest land use from multi-temporal aerial photographs.

Efficient Deep Neural Network Architecture based on Semantic Segmentation for Paved Road Detection (효율적인 비정형 도로영역 인식을 위한 Semantic segmentation 기반 심층 신경망 구조)

  • Park, Sejin;Han, Jeong Hoon;Moon, Young Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1437-1444
    • /
    • 2020
  • With the development of computer vision systems, many advances have been made in the fields of surveillance, biometrics, medical imaging, and autonomous driving. In the field of autonomous driving, in particular, the object detection technique using deep learning are widely used, and the paved road detection is a particularly crucial problem. Unlike the ROI detection algorithm used in general object detection, the structure of paved road in the image is heterogeneous, so the ROI-based object recognition architecture is not available. In this paper, we propose a deep neural network architecture for atypical paved road detection using Semantic segmentation network. In addition, we introduce the multi-scale semantic segmentation network, which is a network architecture specialized to the paved road detection. We demonstrate that the performance is significantly improved by the proposed method.