
 

I. INTRODUCTION 

 

Weakly Supervised Object Localization 

(WSOL) [1] has revolutionized object 

detection by learning from image-level 

labels, bypassing the need for bounding 

box annotations. Despite its cost-

effectiveness and usage of abundant 

unlabeled data, WSOL has limitations such 

as reduced accuracy, struggles with 

complex backgrounds and indistinct 

objects, and localization uncertainty. 

To address these, Class Activation 

Mapping (CAM) [2] has been integrated 

with WSOL. For instance, Zhou et al. 

modified classification architectures like 

AlexNet [3] and VGG-16 [4] by 

substituting fully connected layers with a 

global average pooling layer to aggregate 

features from the final convolution layer 

and generate class-discriminative 

activation maps for localization. 

However, there are inherent problems 

with the CAMs used in WSOL. Since the 

receptive fields of neural networks are 

fixed [5], as input scales increase, the 

activation area ratio for the same neurons 

decreases. This causes the network to 

only recognize localized parts of larger 

objects, resulting in vastly different CAM 

characteristics across varying input scales 

[6]. In Figure 1, class activation maps 

differ according to various input sizes and 

their localization abilities also differ.  
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Abstract 

Weakly supervised object localization (WSOL) is a task of localizing an object in an image using 

only image-level labels. Previous studies have followed the conventional class activation mapping 

(CAM) pipeline. However, we reveal the current CAM approach suffers from problems which 

cause original CAM could not capture the complete defects features. This work utilizes a 

convolutional neural network (CNN) pretrained on image-level labels to generate class activation 

maps in a multi-scale manner to highlight discriminative regions. Additionally, a vision 

transformer (ViT) pretrained was treated to produce multi-head attention maps as an auxiliary 

detector. By integrating the CNN-based CAMs and attention maps, our approach localizes 

defective regions without requiring bounding box or pixel-level supervision during training. We 

evaluate our approach on a dataset of apple images with only image-level labels of defect 

categories. Experiments demonstrate our proposed method aligns with several Object Detection 

models performance, hold a promise for improving localization. 
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Original Ground-truth 256x256 

512x512 1024x1024 Multi-scale 

Fig 1. Class-relevant features localization on CAMs image at varying resolutions 

 

For small-scale input images, the 

general location of objects can be found 

but the particles are coarse-grained, 

while CAM maps generated with large-

scale inputs contain fine-grained details 

but have considerable noise. Attempts 

have been made to complementarily fuse 

these in a multi-scale framework, but it is 

difficult to expect fully satisfactory results 

from such an approach [7]. 

We attempted to boost localization 

performance by concatenating attention 

map insights rooted in the Vision 

Transformer (ViT) [8] model as an 

auxiliary branch within Multiscale-CAMs. 

The use of Multi-Head Attention (MHA) 

and Multi-Layer Perceptron (MLP) 

modules serves as a crucial tool for 

refinement, and self-attention has been 

proven as a key mechanism in effectively 

capturing global information [8]. By 

incorporating the attention map branch, we 

can minimize the noise prevalent in 

multiscale CAM. To summarize, the 

multiscale CAM provided by CNN and the 

attention map derived from ViT, both 

generated from a singular input image, 

offer complementary benefits. This 

combined approach allows for a more 

intuitive understanding of both local and 

global patterns, thereby enhancing the 

precision in localizing discriminative 

regions. 

In this work we validate our proposed 

method using images of apples cultivated 

in an orchard. This dataset, being 

substantially different from the benchmark 

datasets [9][10][11], also presents a 
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higher degree of difficulty. In fact, the 

performance of CAM-based WSOL is not 

notably high in datasets demanding such 

precise localization [6][7][14]. However, 

despite these constraints, our proposed 

method has proven to outperform 

traditional CAM-based WSOL. This could 

be used as a beneficial tool in agriculture, 

helping to alleviate the need for expert 

efforts in generating extensive datasets. 

Further details about the dataset are 

provided in Section 3.1. 

The localization of defects is crucial to 

classify them according to their severity, 

among other factors, on the surface area 

of the affected apple. Working in a 

weakly-supervised manner minimizes the 

work of image labeling since we only need 

image-label annotations. In this way, we 

avoid creating bounding box-level labels 

that require more time, effort, and human 

expertise. 

In short, our contributions are 

summarized as follows: 

1) By incorporating the attention map as 

an auxiliary branch, we have added 

supplementary information that enables 

the multi-scale CAM to detect 

discriminative features with increased 

precision and interpretability of CNN-

based models. 

2) Enables benefits of multi-scale 

attention while retaining the use of 

pretrained CNN and visual saliency models. 

3) Through our proposed method, we 

have enhanced the localization 

performance within the apple dataset, 

achieving more refined results compared 

to traditional CAM-based WSOL. 

The paper is organized as follows: 

Section 2 reviews related work in the field; 

Section 3 offers an in-depth description of 

our proposed algorithm; Section 4 outlines 

the experiments conducted under different 

WSOL conditions and presents a 

comparative analysis involving various 

methods at the multi-scale level. Section 

5 discusses the limitations encountered 

during our experiments. Finally, Section 6 

concludes the paper, summarizing the key 

insights derived from our research. The 

main abbreviations and notations used 

throughout the paper are defined along 

with their corresponding full terms in 

Table 1 and Table 2. 

 

Table 1. List of abbreviations 

Abbreviations Definition 

MS-C Multi-scale CAMs 

MS-CA Multi-scale CAMs + Attention 

MS-CW Multi-scale CAMs with Watershed 

MS-CS Multi-scale CAMs with SLIC 

MS-CSS Multi-scale CAMs with Selective search 

 

Table 2. List of notations 

Symbol Description 

𝐹  
 

Sum of feature map 𝑓 (𝑥, 𝑦) 

𝑆  Classification score for class 𝑐  

𝑤  Weight corresponding to class 𝑐 for feature 
map 𝑘 

α  Average gradient value for channel 𝑘 

𝐹  Value of the 𝑖-th row and 𝑗-th column in 
the feature map 𝑘 

𝐿  Grad-CAM heatmap highlighting important 
areas for class 𝑐 

𝐿 ,  Grad-CAM for category 𝑐 at scale 𝑗 of 
image 𝑖 

𝐴 _  Fused CAM for category 𝑐 across multiple 
scales of image 𝑖 

𝐴  Attention map from the ℎ-th head of the 
ViT model 

ℰℓ The last transformer layer in the ViT model 

𝐿  Aggregated attention map 

𝑆final Final aggregated attention map 

𝑆mask 
Segmented mask for precise object 

localization 

Threshold Threshold value for binarizing the mask 
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II. RELATED WORK 

 

The primary strategy for addressing the 

WSOL framework is through the utilization 

of deep learning methods. Several reasons 

support this choice. Firstly, feature 

learning plays a critical role in enhancing 

the weakly supervised learning process. 

Secondly, deep CNN models can infer 

discriminative spatial locations when 

trained with image-level supervision. 

Thirdly, pre-training deep models on 

large-scale training data serves as a 

simple yet highly effective way to encode 

valuable cues for the weakly supervised 

learning process [15]. 

One approach to weakly supervised 

object localization using deep learning is to 

apply CAM techniques. Since CAM 

approach was initially introduced, most of 

previous studies on WSOL have followed 

its convention e.g., Grad-CAM [16], HaS 

[17], ACoL [1], Score-CAM [18], SPG 

[19], ADL [20], DANet [21], Ablation-

CAM [22]. Regardless of their differences, 

they all follow a similar pipeline to 

generate CAMs, they modify the network 

structure and use the global pooling layer 

instead of the fully connected layer for 

feature fusion. However, these methods 

differ in the way each feature map's 

weights are generated. CAM obtains 

weights from fully connected layers, 

Grad-CAM weight the 2D activations by 

the average gradient, Ablation-CAM zero 

out activations and measure how the 

output drops, Score-CAM perturbate the 

image by the scaled activations and 

measure how the output drops. HaS, ACoL 

add convolutional classification layers on 

top of the backbone to generate CAMs 

directly. 

In several works [6][7][23][24], the 

authors analyzed the potential bottlenecks 

of CAM-based approaches for WSOL 

framework:  

1) Insufficient data and similar 

appearance features of some categories 

causes confusion and discards low 

discriminative features.  

2) The network cannot learn the 

complete object features since the 

perception range of neurons is limited, 

even the top neurons can only perceive a 

part of the image [25]. 

3) Objects have discriminative features 

at different scales, so using a single 

network scale only activates limited 

features. 

 

III. PROPOSED METHOD 

 

In this section, we present the details of 

the custom dataset used in our study, 

specifically designed to address the 

challenges of weakly supervised object 

localization in the context of skin apple 

disease diagnosis. Then we describe the 

proposed method with a detailed 

description of each phase. 

 

3.1. Differences from the benchmark 

WSOL benchmark datasets, such as 

ImageNet [9], COCO [10], and 

OpenImages [11], are characterized by 

their vast volume, class diversity, 

comprehensive annotation, and compact 

resolution. Our custom dataset, however, 

differs significantly. Challenges with this 

dataset arise from the complexity and 

variability of the defective labels. The 

boundaries between the labels are often 
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blurred, making precise classification and 

localization more difficult.  

Despite the challenges, the specialized 

nature of our dataset allows us to 

concentrate on fine-grained features and 

specific challenges related to apple defects, 

potentially leading to more precise 

localization models. 

 

3.2. Surface defective apple dataset 

The Surface Defective Apple (SDA) 

dataset comprises apples from six distinct 

categories: normal, physiological, scratch, 

malformation, blight, and others. These 

categories were meticulously defined 

based on the presence of surface defects 

such as irregular patterns, pest 

infestations, and morphological or 

physiological anomalies.  

The data collection process involved 

taking high-resolution images of apples 

with an industrial-grade camera. In total, 

we collected 12,000 images from 2,000 

Fuji apples harvested from an orchard in 

Jangseong-gun, South Korea, capturing 

six images per apple. The resolution of the 

images was 2448x2048 pixels.  

To prepare the dataset for model 

training and testing, experts manually 

annotated all images in two different ways. 

Initially, each image was individually 

categorized into one of the six different 

classes. As depicted in Table 3, the 

instance-label dataset contained 254 

normal, 30 physiological, 694 scratch, 5 

malformations, 1010 blight, and 125 

images classified as 'others.' It is 

noteworthy that the last five labels are 

considered defective cases, which will be 

employed in subsequent analysis. 

Next, class-label annotation was 

performed, wherein only two primary 

labels - defective and normal - were 

considered. Due to the substantial quantity 

of images to be classified, it should be 

noted that no information about the defect 

location (bounding box annotation) was 

utilized, which simplified the task for the 

annotating experts. 

The primary purpose of the first dataset 

was to evaluate the localization process, 

while the second was utilized solely for the 

training phase. The second dataset was 

further divided, with 90% of the apple 

images used for model training and 

validation, and the remaining 10% 

designated for testing. Concurrently, the 

first dataset was employed to validate the 

inference process. 

 

Table 3. Data on number of Class label and 

Instance label 

 Class-label Instance-label 

Normal 6,201 255 

Defective 3,799 823 

Total 10,000 1,078 

 

Background noise refers to irrelevant or 

distracting elements in the image that are 

not part of the target object, in this case, 

the apple. Therefore, we utilize the apple 

segmentation algorithm. This algorithm 

effectively identifies and extracts the 

apple region from the rest of the image, 

eliminating irrelevant background 

elements. By focusing solely on the apple 

area, we ensure that the CNN-based 

classifier receives clean and relevant input 

data, free from any potential confounding 

factors [31] [32]. Following image 

segmentation, we cropped the isolated 

apple region to a standardized size of 

1024x1024 pixels and got the final image. 
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Fig 2. Proposed method: fused map (MS-CA) obtained by fusing a multiscale CAM (MS-C) with 

an attention map obtained by crossing one of the multi-scale inputs through an auxiliary branch. 

 

3.3. Multi-scale CAM based localization 

with Attention. 

In this section, we present an MS-CA 

for localizing discriminative features from 

apple images in the SDA dataset. Our 

entire process is depicted in Figure 2. Our 

approach consists of three main phases: 

1. Extracting samples from each input 

image at multiple different scales. 

2. Training CNN to classify each scale 

into two classes. This localizes defects, 

highlighting key image regions guiding 

CNN’s decision-making. At this stage, a 

fusion method is introduced.  

3. Utilizing fusion maps from the 

previous phase to attain localization 

results. 

3.3.1. Localization with Multi-scale CAM 

To extract the most discriminative 

target areas using a well-trained 

classification network [33][34][35], we 

employ Grad-CAM, an evolution of the 

CAM [2] method. To achieve weakly 

supervised localization, we modify the 

CNN backbone model by replacing the last 

dense layer with a Global Average Pooling 

(GAP) layer. This GAP layer performs 

average pooling on 𝑘  feature maps 

denoted as 𝑓 (𝑐, 𝑦)  from the last 

convolutional layer, where 𝐹 =

∑ 𝑓 (𝑥, 𝑦), . The resultant spatially pooled 

values are then fully connected to output 
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classification score 𝑆  and the weight 

𝑤  corresponding to class 𝑐. The weight 

α  for each channel 𝑘 is calculated as the 

average gradient value: 

 

𝑆 = 𝑤 𝑓 (𝑥, 𝑦)

,

= 𝑤

,

𝑓 (𝑥, 𝑦) 
(1) 

 

α =
1

𝑍

∂𝑆

∂𝐹
 (2) 

 

In Equation (1,2), 𝑦  is the prediction 

score of the network, 𝐹  signifies the 

value of the 𝑖 -th row and 𝑗 -th in the 

feature map of channel 𝑘. And 𝑍 denotes 

the product of the feature map's width and 

height. 

Subsequently, a weighted summation 

operation is performed using weight 𝛼  

and feature map 𝐴  for each channel. The 

ReLU activation is then applied to filter out 

negative values, resulting in the final 

Grad-CAM map 𝐿 : 

 

𝐿 = ReLU α 𝐹  (3) 

 

In Equation (3), 𝐹  represents the 𝑘-th 

channel within the feature layer 𝐹 . 𝑤  

represents the weight associated with the 

𝑘-th channel in the feature layer. This 

resulting heatmap 𝐿  highlights 

the important areas for class 𝑐, providing 

valuable insights into how the model 

makes its decisions. 

Small defects like decayed areas, 

blemishes, or scratches are common in 

apple images. But a key issue is that single 

CAM only captures parts relevant to 

certain categories, often differing from the 

actual truth. Applying rescaling 

transformations to input images does not 

guarantee the same changes in generated 

CAMs, due to a gap between full and weak 

supervision. 

To address this, inspired by [6][7][25] 

[26][27], we merge CAMs from multi-

scale images to gather varied and 

complementary objects. This approach is 

motivated by the question of whether the 

discriminative parts the network relies on 

for recognition remain consistent for 

objects of varying scales within the same 

category in the dataset. 

For a given input image 𝑖, we sample it 

𝑛 times by setting different sampling rates 

result in 𝑆 , 𝑆 , 𝑆  image. Thus, 𝐿 ,  

represents the Grad-CAM of category 𝑐 

corresponding to the scale 𝑗 of image 𝑖 .  

MS-C are then averaged after resizing, 

resulting in 𝐴 _ . According to 

equation 4, The fused CAM 𝐴 _  is 

obtained through: 

 

𝐴 _ =
𝐿 ,

𝑛
 (4) 

 

3.3.2. Attention map for refinement in 

Multi-scale CAM. 

In contrast to prior attention-based CNN 

methods that integrate attention 

mechanisms directly into the backbone 

architecture, our approach generates 

CAMs and attention maps separately 

outside the CNN backbone without 

modifying the pretrained architecture. 

 CAMs are extracted at multiple sampling 

scales to provide class-specific 

localization information at varying 

2023년 10월 스마트미디어저널 51Smart Media Journal / Vol.12, No.9 / ISSN:2287-1322



resolutions. Meanwhile, the attention map 

gives a measure of visual saliency. The 

key is merging both in a late fusion manner, 

which aims to distinguish class-relevant 

region from fused map and provide more 

accurate defects. Additionally, a key 

advantage of this approach is the flexibility 

to extract CAMs and attention map from 

any existing pretrained CNN classifier 

without needing to retrain the model to 

include attention. 

To generate attention maps, we utilize a 

ViT backbone as a visual saliency model. 

Specifically, multi-head self-attention 

maps are extracted from input images 

using the pretrained ViT model. The model 

comprises transformer layers with self-

attention heads that focus on relevant 

features. To visualize map, the last layer 

was chosen to extract maps from multiple 

heads, each captures distinct image 

patterns. We aggregated information 

across heads into comprehensive attention 

maps 𝐿 : 

 

𝐿 =
1

𝑁
𝐴ℎ ℰ

ℓ
(𝐼)

ℎ

 (5) 

In this formula, 𝐿  denotes the 

aggregated attention map, where 𝐴ℎ 

stands for the attention map from ℎ-th 

head, ℰ
ℓ

 refers to the last transformer 

layer, and 𝐼 represents the image. 

We normalized the MS-C to a 0-1 

range to ensure consistent activation 

values. The MS-C in Equation (4) were 

then combined with auxiliary branch 

attention map 𝐿  from Equation (5) 

using the mean aggregation to obtain the 

aggregated attention map 𝑆final: 

 

𝑆 =
𝐿 + 𝐴 _

2
 (6) 

 

We applied a threshold to 𝑆final to obtain 

a segmented mask, removing regions with 

activation below the threshold. The final 

𝑆  provides precise localization of the 

objects of interest to generate bounding 

boxes on connected areas, with each box 

corresponding to an instance. the 

thresholding process is defined as: 

 

𝑆mask(𝑥, 𝑦) =
1 if 𝑆final(𝑥, 𝑦) ≥ threshold

0, otherwise
 (7) 

 

IV. EXPERIMENTS 

 

This section describes the datasets, 

experiments results obtained in each 

phase of the proposed method and their 

comparison with other methods. 

We implemented the proposed method in 

Python using Pytorch framework on an 

Ubuntu 20.04 machine with Intel Xeon 

CPU, Nvidia Tesla V100 GPU, and 32GB 

memory. 

We evaluate the weakly supervised 

object classification and localization 

performance of the proposed method on 

our specific dataset. 

A binary-class test set containing 1078 

apple images with visually labeled defects 

was tested. After being collected and pre-

processed as described in Section 3-1-3, 

the labeled images are classified as the 

training set (60%), validation set (30%), 

and testing set (10%). We trained 

ResNet50 for classification on the training 

set. The architecture was evaluated on the 

test set to obtain localization results. We 

assess performance at both image and 

instance level. 
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Performance at image level. To evaluate 

apple surface classification, we used 

precision, recall and F1-score. Precision 

measures positive predictions that are 

correct. Recall measures positive cases 

correctly detected. F1-score combines 

precision and recall into a single metric. 

Performance at instance level. For 

localization evaluation, we used mean 

Intersection over Union (mIoU). mIoU 

measures spatial overlap between 

predicted and ground-truth boxes, 

averaged over all instances. Higher mIoU 

indicates more accurate localization. The 

metrics expressed as follows: 

 

IoU =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (8) 

 

mIoU =
1

𝐶
IoU  (9) 

 

To assess our method's performance, 

we incorporate additional techniques to 

enhance object localization. We combine 

MS-C with three refinement methods: 

SLIC (Simple Linear Iterative Clustering) 

[36] (MS-CS), Selective Search [37] 

(MS-CSS), and Watershed [38] (MS-

CW). These serve as post-processing 

steps to refine localization accuracy and 

delineate object boundaries. Across all 

approaches, we apply Non-Maximum 

Suppression with a 0.5 threshold to 

eliminate redundant bounding boxes, 

retaining the most confident predictions. 

 

4.1. Experimenting with CNNs classifier 

selection 

We fine-tuned ResNet50 [33], 

EfficientNet [34], and GoogLeNet [35] on 

512x512 images. Input images were 

standardized by subtracting the mean and 

dividing by standard deviation. Data 

augmentation consisted of flipping and 

rotation. The Adam optimizer was used for 

training the models with a base learning 

rate of 0.001 and weight decay factor of 

0.0001 to regularize the model. The 

learning rate was scheduled to decrease 

by 10% after 10 epochs. The network was 

trained with batch size of 16 and the loss 

function used for training all models was 

cross-entropy. 

 

Table 4. CNN classifier performance (%) 

CNN Classifier Recall Precision F1-Score 

ResNet50 94.50 94.44 94.47 
EfficientNet-V2 94.62 84.32 89.14 

Inception-V4 94.13 88.22 91.15 

 

ResNet50 achieved the best average 

F1-score of 94.47%, compared to 91.15% 

and 89.14% for EfficientNet and 

GoogLeNet. ResNet50 highlighted 

discriminative features for localization 

while maintaining good classification 

accuracy. 

We adopted ResNet50 as the CNN 

backbone given its class-specific features 

and high F1 performance. Results are 

shown in Table 4. 

 

4.2. Experimenting with units of scale in 

CAM and Attention map 

After training, we generated CAMs to 

highlight important object regions. To 

evaluate localization, CAMs were 

thresholded to create segmented 

heatmaps. By varying the threshold 

percentage of the max CAM value, we 

derived pseudo masks that localized 

defects.  
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We validated performance across 

different thresholds. Table 5 shows mIoU 

scores corresponding to each threshold 

choice. A threshold of 0.8 gave optimal 

mIoU for multi-scale CAMs. 

 

Table 5. Localization accuracy measured by mIoU 

(%) for scale and corresponding threshold values. 

Threshold 
Scale 

0.4 0.5 0.6 0.7 0.8 

One-scale 11.21 12.53 15.00 17.26 17.50 

Two-scale 11.05 12.95 16.27 16.28 13.83 

Multi-scale 12.78 16.52 21.65 27.60 31.46 

 

For multi-scale CAMs, we sampled the 

image at rates of 0.25, 0.5 and 1.0. Since 

the CNN classifier was trained on 

512x512 images, using these sampling 

rates allows evaluating CAMs on the same 

scale (0.5x), a smaller scale (0.25x), and 

the full original scale (1x) of the images. 

To generate the saliency maps, we 

utilized a DINO ViT[34] small pre-trained 

on ImageNet dataset. This Vision 

Transformer architecture contained a 

backbone with the following configuration: 

image patches of size 8x8, 12 transformer 

blocks in depth, 6 attention heads and 

layer normalization applied after each 

block. 

As shown in Fig 1, original single-scale 

CAMs only gave a general defects area, 

differing in shape and size from the ground 

truth. In contrast, refined multi-scale 

CAMs were more consistent with actual 

defects, enabling improved detection of 

multiple areas. As seen in Table 6, multi-

scale CAMs outperformed single scale for 

localization, achieving higher mIoU across 

thresholds. This shows fusing multiple 

scales better captures target objects with 

enhanced accuracy. 

 

4.3. Quantitative and Qualitative 

Comparisons 

We found that the MS-C performed 

better when three scales were utilized in 

terms of localization performance. We 

compared the performance of our 

proposed MS-CA, which introduced an 

auxiliary branch for refinement, both 

quantitatively and qualitatively, against 

other refinement methods.  Both 

quantitative and qualitative analysis were 

able to evaluate model ability in capturing 

precise defected localization. 

4.3.1. Quantitative comparisons 

Among the refinements we compared 

with, the MS-CS resulted in varied 

segmentations depending on the number of 

the super-pixel. We thus divided its 

results based on the number of super-

pixel values of 100, 200, 400, and 800. As 

depicted in Table 6, the mIOU scores 

varied according to the threshold, and 

within the same threshold, we observed 

that different refinement methods yielded 

different scores. Our proposed method, 

MS-CA, achieved the highest score of 

39.40% at a threshold of 0.5. Most 

methods showed a lower mIOU at this 

threshold. At another threshold setting of 

0.8, MS-CW recorded the highest mIOU 

at 32.29%, which was still 7.11% lower 

than our proposed method. 

 

4.3.2. Qualitative comparisons 

The combination of MS-C and selective 

search had a limited impact on the results 

in Table 6, so it was excluded from this 

section. Referring to the previously 

presented experimental outcomes,  
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Table 6. Quantitative comparison of localization accuracy across different threshold values measured by 

mIoU (%) 

Threshold 
Refinement          0.4 0.5 0.6 0.7 0.8 

MS-CS (100) 11.59 06.89 04.33 1.92 0.57 
MS-CS (200) 11.39 11.45 11.06 8.00 0.76 
MS-CS (400) 10.23 13.08 14.86 14.56 02.28 
MS-CS (800) 09.29 12.69 16.14 19.27 18.08 

MS-CSS 01.81 00.74 00.74 0.22 0.11 
MS-CW 12.80 16.70 22.12 28.39 32.29 

Proposed method (MS-CA) 31.82 39.40 16.66 1.08 0 

 

Fig 3. Qualitative comparisons on Surface defective apple dataset 
 

integrating various multi-scale techniques, 

and selecting thresholds resulted in 

corresponding mIoU achievements for 

each method. Figure 3 clearly 

demonstrated distinct differences in the 

accuracy and efficiency of each method. 

The first row of Figure 3 allowed us to 

evaluate how accurately each method 

localized minor defects. While some 

methods either detected just one or none, 

our proposed approach could identify both. 

The second row of Figure 3 evaluated the 

ability of each method to detect many 

similar defective areas. It assessed how 

many of these defects could be accurately 

identified by each method. Relatively, our 

method localized accurately, excluding a 

few areas. However, when compared to 

ground-truth, there were cases where 

localization was imprecise. The last row of 

Figure 3 assessed the ability to correctly 

localize when presented with both large 

and minor areas simultaneously. Our 

proposed method proved superior in 

accurate localization. Yet, identifying very 

fine areas obscured by shadows was 

Ground truth MS-C MS-CS MS-WS MS-CA 
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challenging, a challenge that was 

consistent across all refinement methods. 

In conclusion, based on the quantitative 

evaluation, it was evident that our 

proposed method demonstrated better 

performance in accurately localizing 

various types of defective areas. 

 

V. Discussion 

 

5.1. Object detection 

We thoroughly evaluated our proposed 

apple defect detection architecture against 

established object detection models [31] 

[32], [33]. Compared with Faster R-CNN 

[31] and RetinaNet [32], both employing 

ResNet as their feature extraction 

backbone, our method showed competitive 

performance.  

 

Table 7. Object Detection performance in terms 

of apple defects localization 

Model Faster R-CNN  RetinaNet SSD 

mAP (%) 36.00 39.47 36.14 

 

On the test dataset with instance-level 

annotations, as shown in Table 7, Faster 

R-CNN achieved a mAP score of 36%, 

RetinaNet scored 39.47%, while our 

method achieved a mIoU score of 39.40%. 

These results demonstrate the 

effectiveness of our method in defects 

localization, even without an additional 

bounding box refinement module. Notably, 

the exclusion of the 'normal' class during 

both training and evaluation aligns the 

mAP score with the mIoU score in our 

context. Additionally, when extending our 

analysis to include the SSD [33] model 

using VGG as its backbone, we found a 

mAP score of 36.14%, which highlighted 

the SSD model's effective defect 

localization capabilities. Our approach 

performed comparably to detection 

models, highlighting its capability for 

accurate defect localization using only 

image-level labels. 

 

5.2. Reasons for low IoU.  

Our achieved mIoU of 39.40% highlights 

challenges posed by our complex custom 

dataset. The presence of diverse surface 

defects posed unique challenges in 

localization under weak supervision with 

only class labels. The industrial image 

capture introduced potential domain shifts 

in lighting, image quality and viewpoints 

affecting generalization. 

Compared to fully supervised object 

detection model, we see similar results 

arising from annotation limits and dataset 

complexity. Despite the moderate mIoU, 

our method aligns with object detection 

models, reflecting task difficulty given the 

data complexity and weak supervision. 

While not perfect, our approach performs 

comparably on this challenging dataset 

using only class labels. Results highlight 

inherent trade-offs between supervision 

and localization precision. 

  Moving forward, we expect that our 

proposed method can work well on 

benchmark datasets, which have relatively 

large quantities and more easily 

recognizable objects. 

 

VI. Conclusion 

 

In this study, we present a weakly 

supervised deep learning that integrates 

the image classification and localization of 

defected apples. Our proposed weakly 
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supervised object localization method can 

be used in an industrial application due to 

its high efficiency and speed. Besides, it 

only requires an image-level labeled 

dataset, which is less time-consuming, 

reduces the reliance on fully annotated 

data and improves efficiency. Future 

directions for improvement involve 

exploring data augmentation techniques, 

domain adaptation, or fine-tuning 

strategies to enhance localization 

performance on our specific dataset. 
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