• Title/Summary/Keyword: Multi Input Multi Output(MIMO)

Search Result 366, Processing Time 0.032 seconds

An Energy-Efficient Multi-Hop Scheme Based on Cooperative MIMO for Wireless Sensor Networks

  • Peng, Yu-Yang;Abn, Seong-Beom;Pan, Jae-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9A
    • /
    • pp.796-800
    • /
    • 2011
  • An energy-efficient multi-hop scheme based on cooperative MIMO (multiple-input multiple-output) technique is proposed for wireless sensor networks, taking into consideration the modulation constellation size, transmission distance, and extra training overhead requirement. The scheme saves energy by selecting the hop length. In order to evaluate the performance of the proposed scheme, a detailed analysis of the energy and delay efficiencies in the proposed scheme compared with the equidistance scheme is presented. Results from numerical experiments indicate that by use of the proposed scheme significant savings in terms of total energy cousumption can be achieved.

BER Performance Analysis of VBLAST Detection over an Underwater Acoustic MIMO Channel (수중음향 MIMO 채널에서 VBLAST 검파방식의 성능분석)

  • Kang, Heehoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.145-149
    • /
    • 2016
  • For obtaining high speed data rate, underwater acoustic communication has several problems by the different environmental problem. To achieve high speed data rate, a method of multiple antennas have been researched. V-BLAST Algorithm is a detection method applied to terrestrial wireless communications. In this paper, BER performance of VBLAST detection for MIMO system is analyzed in the paper.

The Performance of LDC MIMO Transmission Method by Applying Rotated Constellation for Next Generation UHDTV System (차세대 UHDTV 방송시스템을 위한 회전성상이 적용된 LDC MIMO 전송 기법 성능 평가)

  • Jo, Bong Gyun;Han, Dong Seog
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.06a
    • /
    • pp.32-33
    • /
    • 2013
  • 본 논문에서는 높은 전송량을 요구하는 차세대 UHDTV(ultra-high definition television) 방송시스템을 위하여 MIMO(multi-input multi-output) 전송 기법을 고려하였다. 이러한 MIMO 전송 기법 중에서 가장 좋은 수신 성능을 나타내며, 송신 안테나 개수에 비례하여 전송량이 증가하는 LDC 전송 기법과 수신 성능 향상을 위하여 회전성상 및 심벌의 지연을 이용하는 기법을 고려하였다. 연속적인 에러가 발생하는 채널환경에서 수신 성능을 향상시키기 위해서는 신호를 분산시켜 전송하거나 신호를 섞어서 보내는 방법이 필요하다. 그러므로 본 논문에서는 이러한 두 가지 기법을 동시에 고려하여 높은 전송량을 달성하면서 수신 성능을 향상시킬 수 있는 회전성상이 적용된 LDC MIMO 전송 기법을 제안하고 수신 성능을 컴퓨터 시뮬레이션을 통하여 분석하였다.

  • PDF

Robust Fault Detection Method for Uncertain Multivariable Systems with Application to Twin Rotor MIMO System (모형헬기를 이용한 불확정 다변수 이상검출법의 응용)

  • Kim, Dae-U;Yu, Ho-Jun;Gwon, O-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.136-144
    • /
    • 1999
  • This paper deals with the fault detection problem in uncertain linear multivariable systems and its application. A robust fault detection method presented by Kim et a. (1998) for MIMO (Multi Input/Multi Output) systems has been adopted and applied to the twin rotor MIMO experimental setup using industrial DSP. The system identification problem is formulated for the twin rotor MIMO system and its parameters are estimated using experimental data. Based on the estimated parameters, some fault detection simulations are performed using the robust fault detection method, which shows that the preformance is satisfied.

  • PDF

Analysis of MIMO and Rotated Constellation Transmission System for Ultra High Definition Television (OFDM 시스템에서 LDC 기법을 이용한 채널추정 및 성능 분석)

  • Jo, Bong Gyun;Han, Dong Seog
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.11a
    • /
    • pp.62-63
    • /
    • 2012
  • 본 논문에서는 MIMO(multi-input multi-output)-OFDM(Orthogonal frequency-division multiplexing) 시스템에서 정확한 채널 추정을 위하여 CAZAC 시퀀스를 LDC(linear dispersion code)로 부호화하여 전송하는 시스템을 제안한다. MIMO 시스템의 성능은 채널 추정 성능에 크게 영향을 받는다. 또한 MIMO 시스템은 송수신 안테나 개수에 따라 채널의 개수가 증가하므로 서로 다른 송신 안테나에서 전송된 훈련열을 수신기에서 정확히 분리해야 한다. 그러므로 MIMO-OFDM 시스템에서 훈련열로 사용되어질 CAZAC 시퀀스를 LDC로 부호화하여 수신 채널간의 간섭을 제거하는 방법을 제시하고 그 성능을 컴퓨터 시뮬레이션을 통하여 비교분석하였다.

  • PDF

Partly Random Multiple Weighting Matrices Selection for Orthogonal Random Beamforming

  • Tan, Li;Li, Zhongcai;Xu, Chao;Wang, Desheng
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.892-901
    • /
    • 2016
  • In the multi-user multiple-input multiple-output (MIMO) system, orthogonal random beamforming (ORBF) scheme is proposed to serve multiple users simultaneously in order to achieve the multi-user diversity gain. The opportunistic space-division multiple access system (OSDMA-S) scheme performs multiple weighting matrices during the training phase and chooses the best weighting matrix to be used to broadcast data during the transmitting phase. The OSDMA-S scheme works better than the original ORBF by decreasing the inter-user interference during the transmitting phase. To save more time in the training phase, a partly random multiple weighting matrices selection scheme is proposed in this paper. In our proposed scheme, the Base Station does not need to use several unitary matrices to broadcast pilot symbol. Actually, only one broadcasting operation is needed. Each subscriber generates several virtual equivalent channels with a set of pre-saved unitary matrices and the channel status information gained from the broadcasting operation. The signal-to-interference and noise ratio (SINR) of each beam in each virtual equivalent channel is calculated and fed back to the base station for the weighting matrix selection and multi-user scheduling. According to the theoretical analysis, the proposed scheme relatively expands the transmitting phase and reduces the interactive complexity between the Base Station and subscribers. The asymptotic analysis and the simulation results show that the proposed scheme improves the throughput performance of the multi-user MIMO system.

Optimal Planar Array Architecture for Full-Dimensional Multi-user Multiple-Input Multiple-Output with Elevation Modeling

  • Abubakari, Alidu;Raymond, Sabogu-Sumah;Jo, Han-Shin
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.234-244
    • /
    • 2017
  • Research interest in three-dimensional multiple-input multiple-output (3D-MIMO) beamforming has rapidly increased on account of its potential to support high data rates through an array of strategies, including sector or user-specific elevation beamforming and cell-splitting. To evaluate the full performance benefits of 3D and full-dimensional (FD) MIMO beamforming, the 3D character of the real MIMO channel must be modeled with consideration of both the azimuth and elevation domain. Most existing works on the 2D spatial channel model (2D-SCM) assume a wide range for the distribution of elevation angles of departure (eAoDs), which is not practical according to field measurements. In this paper, an optimal FD-MIMO planar array configuration is presented for different practical channel conditions by restricting the eAoDs to a finite range. Using a dynamic network level simulator that employs a complete 3D SCM, we analyze the relationship between the angular spread and sum throughput. In addition, we present an analysis on the optimal antenna configurations for the channels under consideration.

Performance Improvement of Downlink Real-Time Traffic Transmission Using MIMO-OFDMA Systems Based on Beamforming (Beamforming 기반 MIMO-OFDMA 시스템을 이용한 하향링크 실시간 트래픽 전송 성능 개선)

  • Yang Suck-Chel;Park Dae-Jin;Shin Yo-An
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.1-9
    • /
    • 2006
  • In this paper, we propose a MIMO-OFDMA (Multi Input Multi Output-Orthogonal Frequency Division Multiple Access) system based on beamforming for performance improvement of downlink real-time traffic transmission in harsh channel conditions with low CIR (Carrier-to-Interference Ratio). In the proposed system, we first consider the M-GTA-SBA (Modified-Grouped Transmit Antenna-Simple Bit Allocation) using effective CSI (Channel State Information) calculation procedure based on spatial resource grouping, which is adequate for the combination of MRT (Maximum Ratio Transmission) in the transmitter and MRC (Maximum Ratio Combining) in the receiver. In addition, to reduce feedback information for the beamforming, we also apply QEGT (Quantized Equal Gain Transmission) based on quantization of amplitudes and phases of beam weights. Furthermore, considering multi-user environments, we propose the P-SRA (Proposed-Simple Resource Allocation) algorithm for fair and efficient resource allocation. Simulation results reveal that the proposed MIMO-OFDMA system achieves significant improvement of spectral efficiency in low CRI region as compared to a typical open-loop MIMO-OFDMA system using pseudo-orthogonal space time block code and H-ARQ IR (Hybrid-Automatic Repeat Request Incremental Redundancy).

Superposition Coding in SUS MU-MIMO system for user fairness (사용자 공정성을 위한 MU-MIMO 시스템에서 반직교 사용자 선택 알고리즘에 중첩 코딩 적용 연구)

  • Jang, Hwan Soo;Kim, Kyung Hoon;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.1
    • /
    • pp.99-104
    • /
    • 2014
  • Nowadays, various researches fulfill in many communication engineering area for B4G (Beyond Forth Generation). Next LTE-A (Long Term Evolution Advanced), MU-MIMO (Multi-User Multi Input Multi Output) method raises to upgrade throughput performance. However, the method of user selection is not decided because of many types and discussions in MU-MIMO system. Many existing methods are powerful for enhancing performance but have various restrictions in practical implementation. Fairness problem is primary restriction in this area. Existing papers emphasis algorithm to increase sum-rate but we introduce an algorithm about dealing with fairness problem for real commercialization implementation. Therefore, this paper introduces new user selection method in MU-MIMO system. This method overcomes a fairness problem in SUS (Semiorthogonal User Selection) algorithm. We can use the method to get a similar sum-rate with SUS and a high fairness performance. And this paper uses a hybrid method with SC-SUS (Superposition Coding SUS) algorithm and SUS algorithm. We find a threshold value of optimal performance by experimental method. We show this performance by computer simulation with MATLAB and analysis that results. And we compare the results with another paper's that different way to solve fairness problem.

Adaptive Fuzzy Output Feedback Control based on Observer for Nonlinear Heating, Ventilating and Air Conditioning System

  • Baek, Jae-Ho;Hwang, Eun-Ju;Kim, Eun-Tai;Park, Mi-gnon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.2
    • /
    • pp.76-82
    • /
    • 2009
  • A Heating, Ventilating and Air Conditioning (HVAC) system is a nonlinear multi-input multi-output (MIMO) system. This system is very difficult to control the temperature and the humidity ratio of a thermal space because of complex nonlinear characteristics. This paper proposes an adaptive fuzzy output feedback control based on observer for the nonlinear HVAC system. The nonlinear HVAC system is linearized through dynamic extension. State observers are designed for estimating state variables of the HVAC system. Fuzzy systems are employed to approximate uncertain nonlinear functions of the HVAC system with unavailable state variables. The obtained controller compares with an adaptive feedback controller. Simulation is given to demonstrate the effectiveness of our proposed adaptive fuzzy method.