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Robust Fault Detection Method for Uncertain Multivariable Systems with Application
to Twin Rotor MIMO System

& k- & OIS W AT
{(Dae-Woo Kim * Ho-Jun Yoo - Oh-Kyu Kwon)

Abstract - This paper deals with the fault detection problem in uncertain linear multivariable systems and its
application. A robust fault detection method presented by Kim et al. (1998) for MIMO (Multi Input/Multi Output)
systems has been adopted and applied to the twin rotor MIMO experimental setup using industrial DSP. The system
identification problem is formulated for the twin rotor MIMO system and its parameters are estimated using experimental
data. Based on the estimated parameters, some fault detection simulations are performed using the robust fault detection

method, which shows that the performance is satisfied.
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1. Introduction

Most of FDI (Fault Detection and Isolation) method
using analytical redundancy are based on a number of
Any method developed
idealized assumptions works only if the adopted system

idealized assumptions. in the
models exactly represents the monitored physical system
and no noise or unexpected disturbances are presented. In
practice, these requirements are rather stringent and are
met in few real systems. Usually, the parameters of the
system are uncertain or varying with time, and the
characteristics of the disturbances and noise are unknown
so that there is always a mismatch between the actual
process and its mathematical model even if no fault
occurs in the process. Since the model mismatch causes

performance degradation and false alarm, the effect of

model uncertainties is one of the most crucial point in
FDIL

To overcome this difficulty, the FDI algorithm has to
be made robust to the model uncertainty. The robustness

problem has already become an issue of the area of fault

TIE® R OMA TR CEE TR MR

T # R A TR CER AR 2T - I
BT 1998 6/ 51

Ul 11h

: Fault detection; multivariable system; parameter estimation; MIMO application; linearization errors; bias

detection and diagnosis. Many authors (e. g., Basseville,
1988; Lou et al, 1986; Ninness et al, 1991; Patton and
Chen, 1993) refer to the importance of this problem, and
several methods are proposed to improve the robustness
to modelling errors, noises and disturbances in the fault
detection and diagnosis. See, for example, Isermann (1993),
Kwon et al (1994), Howell(1994), Frank (1995) and Chen
et al. (1996). However, most of them are based on SISO
(Single Input/Single Output) systems.

Linear controllers such as PID or phase lead, lag are
widely used in real industrial fields because they are
simple and has robust characteristic. But these methods
are could be adopted in SISO system or we must derive
the decoupled system. Nevertheless it is not satisfied that
robustness for the modelling error and disturbance in
MIMO system. LQG/LTR technique, which was proposed
in early of 1980, has advantages of multivariable systems
design.

The key aspects in this paper is to verify the
performance of the robust fault detection method for
MIMO (Multi Input/Multi Output) system proposed by
Kim et al (1998). The robust fault detection method is
implemented in this paper by using industrial DSP (Digital
Signal Processing) board and applied to a twin rotor
MIMO

LQG/LTR control technique.

experimental setup which is controlled by



Because the controlled system is highly nonlinear and
coupled, so it is very difficult to derive the exact model of
the system. Even though the system model is not correct,
the robust fault detection algorithm will work and show
good result for the small change of system parameter. In
practice, two sources of error, undermodelling and noise,
are likely to be of comparable significance and both need
to be accounted in the design of an appropriate fault
detection procedure.

The layout of the paper is as follows: In Section 2, the
system description and the robust fault detection method
are summarized in linear MIMO systems with
undermodelling and noise. Section 3 the target system is
described and the model is identified. In Section 4, the
experimental procedure, is described, and experimental

results and conclusions are given.

2. Robust Fault Detection Method
2.1 System Description

One way of representing the model mismatch is to
incorporate additive unmodelled dynamics into the systemn

description as shown in Fig. 1.

j Gs* j v’ 5
U — Y
ch @%m

Fig 1. System with the unmodelled dynamics

It is assumed that the true system Gr and the

nominal model G are stable and causal discrete-time
systems. For simplicity, in this paper, the nominal model

from the i th input to the s th output is taken to be of

the form
L gy Balz L0 Np)
G;:(Z ,6") F,',(Zﬁl. N;ﬂ) (1)
l‘=1,2,3,"',m, j=1,2,"',(]
where z is the discrete transform variable, F;(z7}, Nf)
is a predetermined denominator and
Bi(z™', 6%, Ni) = biz7' + bizP 4+ - - - bz
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Note that any linear stable system can be approximated
by the nominal model (1) by adjusting the orders N% and
N (Salgado, 1989). FIR models and the Laguerre models
(1990) (1991) are

examples of such a model structure. The advantage of

studied by Makila and Wahlberg

representation (1) is that it allows the nominal impulse
response to be represented by a linear function of the
system parameters, and this facilitates parameter
estimation and the quantification of the effects of the bias
error on the estimated model.

Using the system description of Fig. 1, the jth system

output can be represented as follows:

VB = Grla ™l + v

= 3B O NDuEB + 316l DB + () ()

where ¢! denotes the backward shift operator and

T ui( k) .

i) = F
J ,

Denoting the impulse response of G.; by #(-), and
assuming that (k=0 for k<0 and #(-) has the
finite duration N}. Equation (2) can be rewritten
compactly as follows:

V=0 &+ ¥H+V 3
it is assumed that »’(-) is a white

&. The

For simplicity,

noise sequence having variance nominal

parameter vector & can be estimated by the ordinarv

linear least-squares method as follows:
=[NP ()Y )
The main interest here is to quantify the effect of the
H in (3) on the

noise V7 and undermodelling

estimate ®’ of (4). Substituting (3) into (4) gives
-0 = ()T U TVH + V] (5)

= & + @ (6)
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where 53 and @’z are called the variance and bias
errors, respectively, and they are defined by
&, =[(?) T U()TV @
6 =[(&) 01 (&) TH (8)

2.2 Bias and Variance Error Evaluation

The fault detection procedure to be described below
depends on using a measure of the total error in the
parameter estimates due to noise and undermodelling. In
this section, firstly, the variance error due to noise will be
secondly, the bias due to

considered, and, error

undermodelling will be examined.

In the model of Section 2the regression vectors ¢ and

¥ are functions of only the input. Hence the covariance

of the variance error E[&(@&)7] can be evaluated

directly from (7) as

ELG(O)T=1(d) 0] ©)
where o
o( -).

from (8), to be able to say something about the size of

is the variance of the measurement noise

Hereafter, ¢ is assumed to be known. Clearly,

the bias error, it is necessary to know something about
H.

If prior information about the likely undermodelling is
then H
available data. Note that this additional estimate is used

not available, can be estimated from the

only in the quantification of the likely errors in ®’

due to H’ and not in building a more complex model.
An obvious estimate of H’' is to use the full model, i.e.,
from (3)

(4 m,] (o)

() (U”)
Thus the inversion formula for a partitioned matrix gives
B=0("re1"(®ry
where r=1-01(@) 70’1 (0)7
and we have
E(R'-

To evaluate the expected size of K,

HYH - )T =&Y ¢ (10)

a DBayesian

embedding argument is invoked. If H’ is considered as a

realization of a random variable, provided the noise is

gaussian, then B’ and [(w")’f[wf]"oz can be viewed

as the a posteriori mean and covariance of the

conditional distribution for H’, given the data Y . Under

these  conditions, from (10),

EHH) | Y= B(FP -B+ YT -+ H)7| Y]

]

BT + (1w ¢ =c, (11)
Thus, from (8),
E[8(aT7IY ] =
[(@)T01 X)W Cl, (¥)T & [(¢) 70
Provided an independent data set is used to estimate
Cf,,, , then the total error covariance can be represented
by

sequel, the common symbol

the summing form with variance. Thus, in the

f, will be used to denote

either f,,, (when a priori data about H is used) or

Cl. (when a posteriori data about H' is used).

2.3 Fault Detection Method

The bias and variance  errors have been expressed
by the results of the previous two sections. These give
the basis of the fault detection method to be proposed.

there sets of data
()} Y5, (@), (P}
,which correspond to nonfaulty and faulty

The data is

Suppose  that

= {Y{n (mj)n

are two

and I={
systems,
to be modelled

respectively. assumed

analogously to (3) as

Y, =(0), @,+(¥), H, +V, (12)
L= (@), @4+ (V) H, + V), (13)
Given I’;, and Iﬁ, the objective is to  determine

whether or not a fault has occurred in the second set of

data Iﬁ. @’,, and @} are estimated by the least-squares

method as follows:
0, =[(0)(0),17(0),Y,
9, =[P 1) ]Y;
The basic idea of the fault detection procedure is to
8,/ - 9’

compare the observed change with the



likely errors that can result from noise and

undermodelling alone, i.e., when no fault has occurred.
If the observed change is greater than that which can be
explained by these two effects, then it will be concluded
that a fault has occurred.

The composite data of (12) and (13) can be written as
A= [l §1H T ][ V] a0
Y} (0) @, 0 (¥) Vi

hence using the techniques of Section 3,

—~—

&, [(HI(oH,]7'* o
El nl nl ] ) (15)
{ A l [ umﬂwmﬂf]
— —~q T
E{ %] O ]=[ ah ] (16)
ARG B 7
where
R (AR AR A oM E AL A (AR AN
=[(#) TP, (D) THLCin(¥P T (0) 0]
y =[(@DTO)] (@) TBC (TN T (0) 0] T
and
[ [ ] [H’]T} _ [ Ch T%] (17)
(Ch2)" Che

Since it is necessary to evaluate the expected size of

®,’— ®, when no fault occurs, then this calculation
should be camed out under the hypothesis that
H,=H, in (12,13), and (17), i.e.,

Cu = Cip= Cip = C} (18)

Lemma 1: Under the hypothesis that no fault has

occurred,

E [(&- &), - )T

(AR ARESSICAR S (19)
E [(O— O)(&s— 0"
=(Q. - QCUQi- T (20)
where @, = [(@)7(0})]1 () () (21)
Q= (Y0P DY (¥) (22)

Proof: Note that

Al
53
-
o
0x
o
L
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I
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0.~ B, = s=1,2.

j

7 - n[ %i] ,
The result then follows from (15) and (16) on using (18).
N

Remark 4.1: An interesting fact, which follows from
(20), is that if the two experiments are identical, then the
value of the systematic due to

expected error

undermodelling is zero. O

Remark 4.2: The variance error (19) and the bias
error (20) should be combined to evaluate the total error

in 8,’— ®’. In the model of Section 2, provided V
and i are independent, then there is no cross term,
and hence

E (&, - &)&, - )71 =

[N, ) +[() ()71
+H(Q— QNCi(Q}— Q}T

(23)

This expression can be also used in a case where Cj),

is replaced by Cj,. Note that this case, In principle,

requires that an independent set of data be used to

estimate Cj, as in (11). C

The fault detection method proposed will be based on
simple functions of the covariance for the estimated
j_ @ff

parameter change 0, given in (23). A varety

of functions could be employed. For illustration, the
following simple quadratic function will be used:
T, =(8,-89)7(C) " (®,-9) (24)

The test variable in (24) is based on the comparison
0,'— B,

C’. If the test variable is larger than a fixed threshold,

between the estimate and its covariance

this is taken as evidence that the system parameters have

changed, i.e., a fault has occurred. Note, in a case

where noise alone is considered, that 7T is the standard
X test variable (Willsky, 1976), and the threshold value
can be determined from the confidence level consideration
of the x° table.

3. Twin Rotor MIMO Experimental Setup

3.1 System drive
LQG/LTR is a well known controller synthesis method
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of multivariable system with modelling error. To get a
reliable loop configuration, which satisfies performance

-robustness, we synthesis target filter loop using

Kalman filter, and perform loop transfer recovery
procedure using cheap linear controller. Block diagram
of LQG/LTR controller
including system noise w and measurement noise v.
w(s)

+ y(s)

is can be shown Fig 3.1

r(s) e(s)

+

u(s

' Kioa(s) G(s)

Y

Fig 3.1 Block diagram of feedback controller
For reference tracking and zero steady state error ,
synthesis plant model can be made as equation (25)

which include integral component.

x2(8) = Ax(f) + Bu(f)

W)= Cx(D (25)
where
[uD) [0 0) p[1] o=
x(t)‘—[ xp(t) ],A—[ BI, Ap].B [ 0],C—[0 Cp]
and the subscript p means the plant variables.

Required transfer function of target filter loop is (26)

and structure is shown in Fig 3.2.

Gre(s)= C(s[— A)~ 'H (26)
r(s) y(s)
n H » O(s) —» C )

Fig 3.2 Target filter loop
The Kalman filter gain H is caculated by (27), and

P is the solution of the Riccati equation (28).

H= —/11 PCT @7

0 = AP+PAT+LLT— —L PCTCP (28)

where g is the synthesis coefficient which comes from
the cross frequency ( w.),

1
M w%

Choice of L which satisfies the singular value matching
condition in low frequence and high frequency is

shown by (29)

L= “(CpA;lB/:)_l
cree,ch™

where [A,B] is stablizable, and [A,C] is detectable.
Loop recovery can be performed by such (30) and the

(29)

structure can be shown in Fig 3.3
u(s) = K(s) rogiLrre(s)

K(S) 1oc.mr= G(sI- A+ BG—HC)'H (30)

Fig 3.3 Block diagram of LQG/LTR controller
Control gain matrix G is given by (31).

G=%BTK 31)

where K is the solution of control Ricatti equation (32).

0=KA+ATK+ CTC——LKBBTK (32)

32 Experimental Setup Description

The experimental setup used in this paper is shown
in fig 34. Because the frictions are minimized, two
wings can be moved up and down freely. However,
two wings are highly coupled, the moment of one wing
can be affected with another one. For the stability of
the setup, a balancing weight m3 is hanged center of
the setup. Widely used and well known block diagram
of the experimental can be shown as in
1992).

motor and model of a motor can be described by

) K

setup

reference (Butler, Two wings has the same

u = T,st1’ Fiis

where @ is angular velocity.

a lift force causing from motor, and its characteristics

is described by F,=Crd(w R)? 1 R*, where

i=1,2, Cyp is lift velocity coefficient, A is

atmospheric density, and R is each diameter of wing.

3.3 System data acquisition

The motor time constant is very small, and the



motors transition condition has a small effect to the

entire  system. So, through linearization and
approximation, the lift force caused by propeller
;
¥ F
: 3 ?
2 i
m 3 S
Fig 3.4 Twin rotor MIMO experimental
setup
can be represented as
K, 2 K, _
.o | ——T—— . ~—_" , =
Fioc | 71V Ui 5T, s+1 % =12,

Table 3.1 is the setup specification. In the experiment,
system coefficients are achieved approximately using

system identification method and shown in Table 3.2

Table 3.1 The setup specification

4, 4, 25 | R mam | R :an| ms K Tm

24 5an|28.5em | 25em| 28em | 19em|22.4g| 35.08 | 0.0043

The DSP board TMS320C31, used in this experiment,
has an ability floating point calculation and it has AD/DA
include digital 1/0,
counter, timer. TMS320C31 has abilities like 20MIPS (
calculation speed, 32bit
data bus, intermal DMA controller, 64X32 bit instruction

port as digital signal processing

Million Instruction Per Second)

cash and so on.

In this experiment we consider two kinds of faults. One
is the fault of motor itself. Among the reliable faults of
DC motor( Isermann,1993 ), we regards 5% variation of
armature resistance as a system faults. Another is the
loss of sensor (Encoder) signal. In the first experiment
the difference of system behavior or the output waveform
couldn’'t figure out , whether the armature resistance is
increased or not, but the fault is detected. In the second

experiment we regard the signal loss from each rotor (

SHUIE OB BHY clH ojdRYE Y

oo

2
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main totor and tail rotor ) during 0.2 and 0.5 second as

the system fault .

Table 3.2 Estimated coefficients of the setup

rotator main tale
coefficient rotor rotor
drift velocity coefficients i
2.18x10°| 3.23x107
(Cma/'n , C[a/e)
friction coefficients 4
6.67x107| 6.89x10™
(fv, fh)
inertia coefficients of 4
8.33x10 7.41x10™
arms (U, Jn)
inertia coefficients of
412x107| 253x107
propeller (Jns, Jmz)

[TMS 320C31K= Interface

Fig 3.3 Experimental system

4. Experiment Results and Conclusions
Figure 4.2, 44, 4.6, 4.8 have shown fault injection
and figure 4.3, 45, 47, 49 are

computer simulation results for the corresponding cases.

experiments data,

The rectangular area means that the fault is detected in
experiment, and the curve is the simulation results using
MatLab, which shows the output behavior of system
injected. In the experiment,

when the faults are

sampling time is taken as 0.05 second, and covariance of

input and output noises are taken as ¢ = 0.03%

of. = 0.042, respectively.

The performance of the robust fault detection method for
uncertain multivariable systems is exemplified via some
experiments in this chapter, and the results are shown
below. The key feature of this method is that it accounts
for the effects of the variance and bias error due to noise
and model mismatch, respectively. The basic algorithm
adopted here is robust fault detection method in uncertain
Kim

multivariable systems which proposed by et al.
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-

(1998) and the experimental result gives the corresponding
results. The method depends upon the prior information
regarding the nature of the undermodelling and noise. If
this information is not available, then it can be estimated

from either prior experiments or available data on

nonfaulty systems.

Fault detection can be accomplished within 2.5 second
(50 steps) , which is calculated by the sampling time and
can be regard as the detection delay time. For the real
application, we must consider about the threshold value
and the false alarm probability (Basseville, M., 1. Nikiforov
(1993)) especially in parametric approach area. In this
paper, however, threshold evaluation and false alarm rate

evaluation problems are not accomplished yet and will be

the further research goal.
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