• Title/Summary/Keyword: Multi Function

Search Result 3,445, Processing Time 0.028 seconds

Design of the Target Estimation Filter based on Particle Filter Algorithm for the Multi-Function Radar (파티클 필터 알고리즘을 이용한 다기능레이더 표적 추적 필터 설계)

  • Moon, Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.517-523
    • /
    • 2011
  • The estimation filter in radar systems must track targets' position within low tracking error. In the Multi-Function Radar(MFR), ${\alpha}-{\beta}$ filter and Kalman filter are widely used to track single or multiple targets. However, due to target maneuvering, these filters may not reduce tracking error, therefore, may lost target tracks. In this paper, a target tracking filter based on particle filtering algorithm is proposed for the MFR. The advantage of this method is that it can track targets within low tracking error while targets maneuver and reduce impoverishment of particles by the proposed resampling method. From the simulation results, the improved tracking performance is obtained by the proposed filtering algorithm.

Optimum Structural Design of Mid-ship Section of D/H Tankers Based on Common Structural Rules (CSR 을 활용한 이중선각유조선 중앙단면의 최적구조설계)

  • Na, Seung-Soo;Jeon, Hyoung-Geun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.151-156
    • /
    • 2008
  • It is necessary to perform the research works on the general structural designs and optimum structural designs of double hull tankers and bulk carriers due to the newly built Common Structural Rules(CSR). In this study, an optimum structural design of a mid-ship part of double hull oil tanker was carried out by using the CSR. An optimum structural design program was developed by using the Pareto optimal based multi-objective function method. The hull weight and fabrication cost obtained by the single and multi-objective function methods were compared with existing ship by the consideration of CSR and material cost which is recently increasing.

Minimization of the Multi-Output Switching Function by using the Intersection Table and the Cost Table (교차표와 가격표를 이용한 다중출력 이론함수의 최소화)

  • 황희융;김호겸;박영철;조동섭
    • 전기의세계
    • /
    • v.28 no.12
    • /
    • pp.33-40
    • /
    • 1979
  • This mininzation of the multi-output switching function becomes a difficult task when the input varibles and the number of functions increase. This paper describes the optimal selection of prime inplicats for the multi-output switching function by using the Inter-section Table. This procedure is applicable to both manual and computhe programmed realization without complesith. The algorithm is implemented by a computer program in the standard FORTRAN iv language.

  • PDF

Elimination of Screen-Flickering Phenomenon in Multi-Function Display During Flight of Fixed-Wing Aircraft

  • Kwon, Jung-Hyuk;Kwon, Ik-Hyun;Beak, Jun-Ho;Jang, Geun-Hyung;Lee, Wang-Sang
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.45-51
    • /
    • 2021
  • In this study, we aim to eliminate the flickering phenomenon in multi-function display (MFD) units during the flight of fixed-wing aircraft. To execute flight missions effectively, the video signals transmitted to MFDs must provide information accurately and seamlessly. Therefore, a method for addressing the flickering phenomenon-including cause analysis and failure diagnosis-is adopted; specifically, a wiring configuration with a direct connection between the video signal cables and with a short cable length is adopted. The proposed method is experimentally verified using a flight test.

Characteristics of AM and PM Signals in Multi-Carrier Polar Transmitter

  • Kang, Sanggee
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.45-51
    • /
    • 2021
  • Polar transmitter can support multi-band and multi-mode operation. The efficiency of frequency usage can be increased if polar transmitters can transmit multi-carrier signals. In this paper the configuration of polar transmitters is investigated to generate multi-carrier signals. Spectrum and CCDF Simulation results of two-carrier signals generated by the polar transmitter can be used to design of PM and AM path in a polar transmitter.

A proposal on multi-agent static path planning strategy for minimizing radiation dose

  • Minjae Lee;SeungSoo Jang;Woosung Cho;Janghee Lee;CheolWoo Lee;Song Hyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.92-99
    • /
    • 2024
  • To minimize the cumulative radiation dose, various path-finding approaches for single agent have been proposed. However, for emergence situations such as nuclear power plant accident, these methods cannot be effectively utilized for evacuating a large number of workers because no multi-agent method is valid to conduct the mission. In this study, a novel algorithm for solving the multi-agent path-finding problem is proposed using the conflict-based search approach and the objective function redefined in terms of the cumulative radiation dose. The proposed method can find multi paths that all agents arrive at the destinations with reducing the overall radiation dose. To verify the proposed method, three problems were defined. In the single-agent problem, the objective function proposed in this study reduces the cumulative dose by 82% compared with that of the shortest distance algorithm in experiment environment of this study. It was also verified in the two multi-agent problems that multi paths with minimized the overall radiation dose, in which all agents can reach the destination without collision, can be found. The method proposed in this study will contribute to establishing evacuation plans for improving the safety of workers in radiation-related facilities.

A Study on the Realization of Variable Spatial Filtering Detector with Multi-Value Weighting Function (계측용 공간필터의 가변적 다치화된 가중치 실현에 관한 연구)

  • Jeong, Jun-Ik;Han, Young-Bae;Go, Hyun-Min;Rho, Do-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.481-483
    • /
    • 1998
  • In general, spatial filtering method was proposed to simplify measurement system through parallel Processing hardware. Spatial filtering is a method of detection that we can get a spatial pattern information, as we process a special space pattern, to say, as we process spatial parallel process by using the spatial weighting function. The important processing characteristics will be depended in according to how ire design a spatial weighting function, a spatial sensitive distribution. The form of the weighting function which is realized from the generally used spatial filtering is fixed and the weighting value was already became a binary-value. In this paper, we propose a new method in order to construct adaptive measurement systems. This method is a weighting function design to make multi-valued and variable.

  • PDF

Multi-Hop Clock Synchronization Based on Robust Reference Node Selection for Ship Ad-Hoc Network

  • Su, Xin;Hui, Bing;Chang, KyungHi
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.65-74
    • /
    • 2016
  • Ship ad-hoc network (SANET) extends the coverage of the maritime communication among ships with the reduced cost. To fulfill the growing demands of real-time services, the SANET requires an efficient clock time synchronization algorithm which has not been carefully investigated under the ad-hoc maritime environment. This is mainly because the conventional algorithms only suggest to decrease the beacon collision probability that diminishes the clock drift among the units. However, the SANET is a very large-scale network in terms of geographic scope, e.g., with 100 km coverage. The key factor to affect the synchronization performance is the signal propagation delay, which has not being carefully considered in the existing algorithms. Therefore, it requires a robust multi-hop synchronization algorithm to support the communication among hundreds of the ships under the maritime environment. The proposed algorithm has to face and overcome several challenges, i.e., physical clock, e.g., coordinated universal time (UTC)/global positioning system (GPS) unavailable due to the atrocious weather, network link stability, and large propagation delay in the SANET. In this paper, we propose a logical clock synchronization algorithm with multi-hop function for the SANET, namely multi-hop clock synchronization for SANET (MCSS). It works in an ad-hoc manner in case of no UTC/GPS being available, and the multi-hop function makes sure the link stability of the network. For the proposed MCSS, the synchronization time reference nodes (STRNs) are efficiently selected by considering the propagation delay, and the beacon collision can be decreased by the combination of adaptive timing synchronization procedure (ATSP) with the proposed STRN selection procedure. Based on the simulation results, we finalize the multi-hop frame structure of the SANET by considering the clock synchronization, where the physical layer parameters are contrived to meet the requirements of target applications.

An Analytical Approach to Derive the Quality Loss Function with Multi-characteristics by Taguchi's Quality Loss Concept (다구찌 품질손실개념에 의한 다특성치 품질손실함수 도출의 분석적 접근방법)

  • Pai, Hoo Seok;Lim, Chae Kwan
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.4
    • /
    • pp.535-552
    • /
    • 2020
  • Purpose: The main theme of this study is to derive a specific quality loss function with multiple characteristics according to the same analytical structure as the single characteristic quality loss function of Taguchi. In other words, it presents an analytical framework for measuring quality costs that can be controlled in practice. Methods: This study followed the analytical methodology through geometric, linear algebraic, and statistical approaches Results: The function suggested by this study is as follows; $$L(x_1,x_2,{\cdots},x_t)={\sum\limits_{i=1}^{t}}k_i\{x_i+{\sum\limits_{j=1}^{t}}\({\rho}_{ij}{\frac{d_i}{d_j}}\)x_j\}x_i$$ Conclusion: This paper derived the quality loss function with multiple quality characteristics to expand the usefulness of the Taguchi quality loss function. The function derived in this paper would be more meaningful to estimate quality costs under the practical situation and general structure with multiple quality characteristics than the function by linear algebraic approach in response surface analysis.

A new multi-stage SPSO algorithm for vibration-based structural damage detection

  • Sanjideh, Bahador Adel;Hamzehkolaei, Azadeh Ghadimi;Hosseinzadeh, Ali Zare;Amiri, Gholamreza Ghodrati
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.489-502
    • /
    • 2022
  • This paper is aimed at developing an optimization-based Finite Element model updating approach for structural damage identification and quantification. A modal flexibility-based error function is introduced, which uses modal assurance criterion to formulate the updating problem as an optimization problem. Because of the inexplicit input/output relationship between the candidate solutions and the error function's output, a robust and efficient optimization algorithm should be employed to evaluate the solution domain and find the global extremum with high speed and accuracy. This paper proposes a new multi-stage Selective Particle Swarm Optimization (SPSO) algorithm to solve the optimization problem. The proposed multi-stage strategy not only fixes the premature convergence of the original Particle Swarm Optimization (PSO) algorithm, but also increases the speed of the search stage and reduces the corresponding computational costs, without changing or adding extra terms to the algorithm's formulation. Solving the introduced objective function with the proposed multi-stage SPSO leads to a smart feedback-wise and self-adjusting damage detection method, which can effectively assess the health of the structural systems. The performance and precision of the proposed method are verified and benchmarked against the original PSO and some of its most popular variants, including SPSO, DPSO, APSO, and MSPSO. For this purpose, two numerical examples of complex civil engineering structures under different damage patterns are studied. Comparative studies are also carried out to evaluate the performance of the proposed method in the presence of measurement errors. Moreover, the robustness and accuracy of the method are validated by assessing the health of a six-story shear-type building structure tested on a shake table. The obtained results introduced the proposed method as an effective and robust damage detection method even if the first few vibration modes are utilized to form the objective function.