Recently, many techniques have been proposed to improve the noise robustness for speaker verification. In this paper, we consider the feature recombination technique in multi-band approach. In the conventional feature recombination for speaker verification, to compute the likelihoods of speaker models or universal background model, whole feature components are used. This computation method is not effective in a view point of multi-band approach. To deal with non-effectiveness of the conventional feature recombination technique, we introduce a subband likelihood computation, and propose a modified feature recombination using subband likelihoods. In decision step of speaker verification system in noise environments, a few very low likelihood scores of a speaker model or universal background model cause speaker verification system to make wrong decision. To overcome this problem, a reliable feature selection method is proposed. The low likelihood scores of unreliable feature are substituted by likelihood scores of the adaptive noise model. In here, this adaptive noise model is estimated by maximum a posteriori adaptation technique using noise features directly obtained from noisy test speech. The proposed method using subband-based reliable feature selection obtains better performance than conventional feature recombination system. The error reduction rate is more than 31 % compared with the feature recombination-based speaker verification system.
본 연구에서는 모델의 경량화를 위해 교사 모델의 출력 특징맵에서 3D 객체의 정보를 추출해 학생 모델의 다중 스케일 특징맵(Multi-scale feature map)에 맞게 증류하는 3D 객체 검출용 다중스케일 특징 지식 증류 기법인 M3KD (Multi-Scale Feature Knowledge Distillation for 3D Object Detection)를 제안한다. M3KD는 지식 증류 수행 시 학생 모델과 교사 모델의 다중 스케일 특징맵들 간 L2 손실(loss)을 사용해 특징맵 값의 차이를 줄이게 함으로써 학생 모델이 교사 모델의 백본을 모방하게 하여 학생 모델의 전체적인 정확도를 향상시키고, 기존의 이미지 분류 태스크(Task)에서 사용하는 클래스 로짓(Logits) 지식 증류를 적용해 교사 모델의 클래스 분류 로짓을 모방함으로써 학생 모델의 검출 정확도를 향상시킨다. 본 연구가 제안한 M3KD의 효과를 증명하기 위해 KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute) 데이터 셋에서 실험을 진행하였으며, 이때 학습한 학생 모델이 교사 모델 대비 30%의 추론 속도 향상을 달성하였다. 또한, 정확도에서 기존의 학생 모델과 비교시 모든 클래스 및 모든 난이도에서 평균적으로 1.08%의 3D mAP (Mean Average Precision) 향상이 있음을 확인하였다. 또한 최신 지식 증류 기법인 PKD, SemCKD에 제안하는 기법을 추가로 적용하였을 시 기존 대비 0.42%, 0.52% 높은 정확도 (3D mAP)를 나타내 성능 향상을 달성하였다.
본 논문에서는 멀티코어 환경에서 파노라마 이미지 생성 시간을 단축시키기 위해 특징점 추출 알고리즘을 병렬화한다. 여러 장의 사진들을 합성하여 파노라마 이미지를 만드는 과정에는 사진들 간의 겹치는 영역을 찾아내기 위해 각 사진의 특징점을 추출하는 단계가 필요하다. 계산량이 많은 특징점 추출 단계를 빠르게 수행하기 위해 비대칭 멀티 프로세서 아키텍처인 CBE(Cell Broadband Engine)를 사용하여 특징점 추출 병렬 알고리즘을 개발하고, 성능이 얼마나 향상되는지 실험하였다. 실험 결과, 본 논문에서 개발한 병렬 알고리즘은 프로세서 수에 비례하여 성능이 높아지는 선형 확장성의 특징을 보였다. 이처럼 멀티코어 환경에서 이미지 프로세싱 작업 수행 시에 어떻게 하면 높은 성능의 좋은 결과를 낼 수 있는지 알아본다.
This paper presents the feature extraction of fault currents related to the multi-shot reclosing scheme in the power distribution system. In order to get the fault current waveform, we have measured the fault currents by the fault recorders which have been installed at the secondary side of 154/22.9[kV] substation transformer. These waveforms are classified into temporary and permanent fault. For the classified waveforms, Fourier transform is used to extract the feature of the fault current waveforms. After the waveforms are analyzed by using Fourier transform, the magnitude spectrum and the relative variation of THD (Total Harmonic Distortion) are calculated. And then the relative variation of THD is great in the temporary faults, and is small in the permanent faults.
An indirect visual SLAM takes raw image data and exploits geometric information such as key-points and line edges. Due to various environmental changes, SLAM performance may decrease. The main problem is caused by dynamic objects especially in highly crowded environments. In this paper, we propose a robust feature-based visual SLAM, building on ORB-SLAM, via multi-channel dynamic objects estimation. An optical flow and deep learning-based object detection algorithm each estimate different types of dynamic object information. Proposed method incorporates two dynamic object information and creates multi-channel dynamic masks. In this method, information on actually moving dynamic objects and potential dynamic objects can be obtained. Finally, dynamic objects included in the masks are removed in feature extraction part. As a results, proposed method can obtain more precise camera poses. The superiority of our ORB-SLAM was verified to compared with conventional ORB-SLAM by the experiment using KITTI odometry dataset.
본 논문에서는 다양한 잡음환경에서의 실시간 적응화 기법을 적용하기 위한 선결 과제로 다차원 음성 특정 벡터를 저차원으로 축소하는 방법을 제안한다. 제안된 방법은 특징 벡터를 확률 우도 값으로 매핑시켜 비선형적으로 축소하는 방법으로 음성 / 비음성의 분류는 우도비 검증 (Likelihood Ratio Test; LRT) 을 이용하여 분류하였다. 실험 결과 고차원 특징 벡터를 이용하여 분류한 결과와 대등하게 분류됨을 확인할 수 있었다. 그리고, 제안된 방법에 의해 검출된 음성 데이터를 이용한 음성인식 실험에서도 10차 MFCC(Mel-Frequency Cepstral Coefficient)를 사용하여 분류한 경우와 대등한 인식률을 보여주었다.
In this paper, the multi feature extraction algorithm for estimation of wrist movements based on Electromyogram(EMG) is proposed. For the extraction of precise features from the EMG signals, the difference absolute mean value(DAMV), the mean absolute value(MAV), the root mean square(RMS) and the difference absolute standard deviation value(DASDV) to consider amplitude characteristic of EMG signals are used. We figure out a more accurate feature-set by combination of two features out of these, because of multi feature extraction algorithm is more precise than single feature method. Also, for the motion classification based on EMG, the linear discriminant analysis(LDA), the quadratic discriminant analysis(QDA) and k-nearest neighbor(k-NN) are used. We implemented a test targeting twenty adult male to identify the accuracy of EMG pattern classification of wrist movements such as up, down, right, left and rest. As a result of our study, the LDA, QDA and k-NN classification method using feature-set with MAV and DASDV showed respectively 87.59%, 89.06%, 91.75% accuracy.
Animated anaglyph is the most cost-effective method for 3D stereo visualization of virtual or actual 3D geo-based data model. Unlike 3D anaglyph scene generation using paired epipolar images, the main data sets of this study is the multi-typed 3D feature model containing 3D shaped objects, DEM and satellite imagery. For this purpose, a prototype implementation for 3D animated anaglyph using OpenGL API is carried out, and virtual 3D feature modeling is performed to demonstrate the applicability of this anaglyph approach. Although 3D features are not real objects in this stage, these can be substituted with actual 3D feature model with full texture images along all facades. Currently, it is regarded as the special viewing effect within 3D GIS application domains, because just stereo 3D viewing is a part of lots of GIS functionalities or remote sensing image processing modules. Animated anaglyph process can be linked with real-time manipulation process of 3D feature model and its database attributes in real world problem. As well, this approach of feature-based 3D animated anaglyph scheme is a bridging technology to further image-based 3D animated anaglyph rendering system, portable mobile 3D stereo viewing system or auto-stereo viewing system without glasses for multi-viewers.
본 연구는 인식의 정확성을 향상시키기 위하여 단일 특징을 이용한 인식 대신에 다중 특징을 이용하는 인식방법을 제안한다. 각각의 특징은 다음과 같은 방법으로 구하여진다. 얼굴 전체의 특징은 웨이블렛 다해상도 분해와 주성분 분석방법으로 계산하였고, 입술의 경우는 입술의 경계를 구한 후 최소 자승법을 이용한 방정식의 계수를 구하였으며, 또 하나의 특징은 얼굴요소의 거리 비율에 의해 구하였다. 위 값들을 입력으로 한 역전파 학습 알고리즘으로 분류하여 실험하여 제안된 방범의 유효성을 확인하였다.
Generally, in the underwater target recognition, feature vectors are extracted from the target signal utilizing spatial information according to target shape/material characteristics. In addition, various signal processing techniques have been studied to extract feature vectors which are less sensitive to the location of the receiver. In this paper, we synthesized active echo signals using 3-dimensional highlight distribution. Then, Fractional Fourier transform was applied to echo signals to extract signal features. For the performance verification, classification experiments were performed using backpropagation and probabilistic neural network classifiers based on single aspect and multi-aspect method. As a result, we obtained a better recognition result using proposed feature extraction and multi-aspect based method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.