• Title/Summary/Keyword: Multi Channel Receiver

Search Result 254, Processing Time 0.025 seconds

Sparse decision feedback equalization for underwater acoustic channel based on minimum symbol error rate

  • Wang, Zhenzhong;Chen, Fangjiong;Yu, Hua;Shan, Zhilong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.617-627
    • /
    • 2021
  • Underwater Acoustic Channels (UAC) have inherent sparse characteristics. The traditional adaptive equalization techniques do not utilize this feature to improve the performance. In this paper we consider the Variable Adaptive Subgradient Projection (V-ASPM) method to derive a new sparse equalization algorithm based on the Minimum Symbol Error Rate (MSER) criterion. Compared with the original MSER algorithm, our proposed scheme adds sparse matrix to the iterative formula, which can assign independent step-sizes to the equalizer taps. How to obtain such proper sparse matrix is also analyzed. On this basis, the selection scheme of the sparse matrix is obtained by combining the variable step-sizes and equalizer sparsity measure. We call the new algorithm Sparse-Control Proportional-MSER (SC-PMSER) equalizer. Finally, the proposed SC-PMSER equalizer is embedded into a turbo receiver, which perform turbo decoding, Digital Phase-Locked Loop (DPLL), time-reversal receiving and multi-reception diversity. Simulation and real-field experimental results show that the proposed algorithm has better performance in convergence speed and Bit Error Rate (BER).

Design of STM32-based Quadrotor UAV Control System

  • Haocong, Cai;Zhigang, Wu;Min, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.353-368
    • /
    • 2023
  • The four wing unmanned aerial vehicle owns the characteristics of small size, light weight, convenient operation and well stability. But it is easily disturbed by external environmental factors during flight with these disadvantages of short endurance and poor attitude solving ability. For solving these problems, a microprocessor based on STM32 chip is designed and the overall development is completed by the resources such as built-in timer and multi-function mode general-purpose input/output provided by the master micro controller unit, together with radio receiver, attitude meter, barometer, electronic speed control and other devices. The unmanned aerial vehicle can be remotely controlled and send radio waves to its corresponding receiver, control the analog level change of its corresponding channel pins. The master control chip can analyze and process the data to send multiple sets pulse signals of pulse width modulation to each electronic speed control. Then the electronic speed control will transform different pulse signals into different sizes of current value to drive the motor located in each direction of the frame to generate different rotational speed and generate lift force. To control the body of the unmanned aerial vehicle, so as to achieve the operator's requirements for attitude control, the PID controller based on Kalman filter is used to achieve quick response time and control accuracy. Test results show that the design is feasible.

A Study on the Efficient Interference Cancellation for Multi-hop Relay Systems (다중 홉 중계 시스템에서 효과적인 간섭 제거에 관한 연구)

  • Kim, Eun-Cheol;Cha, Jae-Sang;Kim, Seong-Kweon;Lee, Jong-Joo;Kim, Jin-Young;Kang, Jeong-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.47-52
    • /
    • 2009
  • The transmitted signal from a source is transmitted to a destination through wireless channels. But if the mobile destination is out of the coverage of the source or exists in the shady side of the coverage, the destination can not receiver the signal from the source and they can not maintain communication. In order to overcome these problems, we adopt relays. A system employing relays is a multi-hop relay system. In the multi-hop relay system, coverages of each relay that is used for different systems can overlap each other in some place. When there is a destination in this place, interference occurs at the destination. In this paper, we study on the efficient co-channel interference (CCI) cancellation algorithm. In the proposed strategy, CCI is mitigated by zero forcing (ZF) or minimum mean square error (MMSE) receivers. Moreover, successive interference cancellation (SIC) with optimal ordering algorithm is applied for rejecting CCI efficiently. And we analyzed and simulated the proposed system performance in Rayleigh fading channel. In order to justify the benefit of the proposed strategy, the overall system performance is illustrated in terms of bit error probability.

  • PDF

Optimal Selection of Reference Vector in Sub-space Interference Alignment for Cell Capacity Maximization (부분공간 간섭 정렬에서 셀 용량 최대화를 위한 최적 레퍼런스 벡터 설정 기법)

  • Han, Dong-Keol;Hui, Bing;Chang, Kyung-Hi;Koo, Bon-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5A
    • /
    • pp.485-494
    • /
    • 2011
  • In this paper, novel sub-space interference alignment algorithms are proposed to boost the capacity in multi-cell environment. In the case of conventional sub-space alignment, arbitrary reference vectors have been adopted as transmitting vectors at the transmitter side, and the inter-cell interference among users are eliminated by using orthogonal vectors of the chosen reference vectors at the receiver side. However, in this case, sum-rate varies using different reference vectors even though the channel values keep constant, and vice versa. Therefore, the relationship between reference vectors and channel values are analyzed in this paper, and novel interference alignment algorithms are proposed to increase multi-cell capacity. Reference vectors with similar magnitude are adopted in the proposed algorithm. Simulation results show that the proposed algorithms provide about 50 % higher sum-rate than conventional algorithm.

Transmission Techniques for Downlink Multi-Antenna MC-CDMA Systems in a Beyond-3G Context

  • Portier Fabrice;Raos Ivana;Silva Adao;Baudais Jean-Yves;Helard Jean-Francois;Gameiro Atilio;Zazo Santiago
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.157-170
    • /
    • 2005
  • The combination of multiple antennas and multi-carrier code division multiple-access (MC-CDMA) is a strong candidate for the downlink of the next generation mobile communications. The study of such systems in scenarios that model real-life trans-missions is an additional step towards an optimized achievement. We consider a realistic MIMO channel with two or four transmit antennas and up to two receive antennas, and channel state information (CSI) mismatches. Depending on the mobile terminal (MT) class, its number of antennas or complexity allowed, different data-rates are proposed with turbo-coding and asymptotic spectral efficiencies from 1 to 4.5 bit/s/Hz, using three algorithms developed within the European IST-MATRICE project. These algorithms can be classified according to the degree of CSI at base-station (BS): i) Transmit space-frequency prefiltering based on constrained zero-forcing algorithm with complete CSI at BS; ii) transmit beamforming based on spatial correlation matrix estimation from partial CSI at BS; iii) orthogonal space-time block coding based on Alamouti scheme without CSI at BS. All presented schemes require a reasonable complexity at MT, and are compatible with a single-antenna receiver. A choice between these algorithms is proposed in order to significantly improve the performance of MC-CDMA and to cover the different environments considered for the next generation cellular systems. For beyond-3G, we propose prefiltering for indoor and pedestrian microcell environments, beamforming for suburban macrocells including high-speed train, and space-time coding for urban conditions with moderate to high speeds.

Performance Comparison of the TR-UWB System Using Wavelet Pulse in Multiuser Environment (Wavelet Pulse를 이용한 다중 사용자 환경에서의 TR-UWB 시스템의 성능 비교)

  • Lee, Kyu-Seup;Choi, Gin-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • In this paper, the performance comparison of the TR-UWB System using Wavelet Pulse, DPSS pulse, and second Gaussian pulse in multi-user environment is analyzed. The data signal and the reference signal is sent with some time intervals in TR-UWB system. At this time the two signals are through the same channel. In the receiver the reference signal is used as a template. This advantage results in demodulation without channel estimation and low complexity of it. However the conventional TR-UWB system based on a Gaussian signal in a multi-user environment has the disadvantage of poor performance due to the interferences between the users. To overcome this disadvantage, DPSS (Discrete Prolate Shperoidal Sequence) is used to reduce the interferences between the users. We propose the system with multiresolution function of orthogonal wavelet reducing the interferences, which has a better performance in multi-user environment when they are sent in transmission side.

Performance of SIR-based power control using unused OVSF codes for WCDMA reverse link receiver (미사용 OVSF 부호를 이용한 WCDMA 역방향 링크 수신기의 SIR 기반 전력제어 성능 분석)

  • 이영용;박수진;안재민;임민중;정성현;최형진
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.7
    • /
    • pp.282-292
    • /
    • 2003
  • In this paper, we evaluate the performance of WCDMA reverse link receiver system with closed loop fast transmit power control (TPC). For fast power control, SIR must be measured precisely. We propose a new SIR measurement algorithm having a simple structure. The proposed algorithm uses unused OVSF code for interference power evaluation. The proposed SIR measurement algorithm is compared to the conventional SIR measurement algorithm in Ref.$^{[1]}$ under closed loop fast TPC. We adopted WMSA channel estimation filter with Κ=2 for mobile radio channel estimation and considered one slot TPC delay. Extensive computer simulation results show that the proposed algorithm using unused OVSF code reduces the required Ε$_{b}$$_{0}$ at the BER of 10$^{-3}$ up to 0.9㏈ and has an improved TPC error performance compared to the conventional algorithm.

Performance Comparison of Trellis Coded Multi-Carrier CDMA SYstem with Transmite/Rceive Antenna Diversity in Indoor Radio Channel (실내 무선 채널에서 송신/수신 안테나 다이버시티를 적용한 Trellis 부호화된 Multi-Carrier CDMA 시스템의 성능 비교)

  • 노재성;이찬주;김언곤;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8B
    • /
    • pp.1348-1356
    • /
    • 2000
  • In this paper, we proposed a trellis coded Multi-Carrier CDMA 16 QAM system with multiple transmit/receive antenna diversity technique, which is simple and suitable for indoor wireless communications. The proposed multiple transmit/receive antenna diversity technique is that the transmitter sends a trellis coded Multi-Carrier CDMA 16 QAM signal from multiple transmitting antennas with intentional time delays, which makes a receiver possible to distinguish and combine the signals from different antennas. In wireless indoor communication system, if we allow the increase of the complexity of the system, it is also possible to achieve additional diversity gain in the performance with the combination of the proposed technique and the conventional receiving antenna diversity. Furthermore, we have found that the proposed trellis coded Multi-Carrier CDMA 16 QAM system, which employs multiple transmit/receive antenna, is less sensitive to the multiple user interference and fading than conventional receiving antenna diversity systems.

  • PDF

Playback Downlink and Telecommand Uplink Channel Design for Transportable KOMPSAT Ground Station (이동형 다목적실용위성 소형 관제국의 Playback 하향 링크 및 원격 명령 상향 링크 채널 설계)

  • Ahn, Sang-Il;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.4
    • /
    • pp.396-405
    • /
    • 2009
  • This paper describes playback downlink and telecommand uplink channel design performed for a transportable small-sized KOMPSAT(Korea Multi-Purpose Satellite) ground station. As a result of downlink channel design, required receiving performance was calculated from the threshold signal-to-noise ratio of playback signal and it was revealed that this performance can be guaranteed in 1.5 m ground station with 6.5 dB/K of G/T. For the uplink channel design, 40 dBW of EIRP was derived from the threshold signal-to-noise ratio of telecommand signal received at on-board receiver. The implemented small-sized ground station based on design was evaluated to be fully acceptable for KOMPSAT TT&C(Telemetry, Tracking and Command) system and playback downlink design without taking account of additional 3 dB system link margin was shown to be effective because it had provided constantly initial channel performance without any remarkable degradation over several years of tests with KOMPSAT and KOMPSAT-2, for both uplink and playback downlink in the elevation angle above $10^{\circ}$.

Performance Improvement of Downlink Real-Time Traffic Transmission Using MIMO-OFDMA Systems Based on Beamforming (Beamforming 기반 MIMO-OFDMA 시스템을 이용한 하향링크 실시간 트래픽 전송 성능 개선)

  • Yang Suck-Chel;Park Dae-Jin;Shin Yo-An
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.1-9
    • /
    • 2006
  • In this paper, we propose a MIMO-OFDMA (Multi Input Multi Output-Orthogonal Frequency Division Multiple Access) system based on beamforming for performance improvement of downlink real-time traffic transmission in harsh channel conditions with low CIR (Carrier-to-Interference Ratio). In the proposed system, we first consider the M-GTA-SBA (Modified-Grouped Transmit Antenna-Simple Bit Allocation) using effective CSI (Channel State Information) calculation procedure based on spatial resource grouping, which is adequate for the combination of MRT (Maximum Ratio Transmission) in the transmitter and MRC (Maximum Ratio Combining) in the receiver. In addition, to reduce feedback information for the beamforming, we also apply QEGT (Quantized Equal Gain Transmission) based on quantization of amplitudes and phases of beam weights. Furthermore, considering multi-user environments, we propose the P-SRA (Proposed-Simple Resource Allocation) algorithm for fair and efficient resource allocation. Simulation results reveal that the proposed MIMO-OFDMA system achieves significant improvement of spectral efficiency in low CRI region as compared to a typical open-loop MIMO-OFDMA system using pseudo-orthogonal space time block code and H-ARQ IR (Hybrid-Automatic Repeat Request Incremental Redundancy).