• Title/Summary/Keyword: Mullins effect

Search Result 9, Processing Time 0.031 seconds

Temperature-dependent Mullins Effect in Anti-vibration Rubber for Railway Vehicles (철도 차량용 방진고무의 온도에 따른 뮬린스 효과)

  • Oh, Sunghun;Lee, Su-Yeong;You, Jihye;Kim, Hong Seok;Cheong, Seong-Kyun;Shin, Ki-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.193-198
    • /
    • 2017
  • Rubber materials are widely used for anti-vibration in various industries such as railways, automobile, and aviation. However, various factors hinder the accurate prediction of mechanical properties and lifetime of these materials. Particularly, a stress softening phenomenon Mullins effect greatly affects the accuracy of test results by reducing the initial peak stress. Although the Mullins effect has been studied previously, research on its temperature dependence is lacking. In this study, we performed experiments to estimate the temperature dependence of the Mullins effect. Dumbbell specimens made of natural rubber (NR65) was mounted on a stress softening tester and placed in a heat chamber, where they were tested at temperature of 25, 50, and $80^{\circ}C$. Further, five test sets, each consisting of 10 loading/unloading cycles were sequentially performed at predetermined time intervals. Based on the test results, we assessed the effect of temperature and time interval on stress softening and recovery.

Prediction of Shape Recovery for Ni-Ti SMA Wire after Drawing (Ni-Ti 형상기억합금 선재의 인발 공정 후 형상회복 예측에 관한 연구)

  • Kim, S.H.;Lee, K.H.;Lee, S.B.;Yeom, J.T.;Park, C.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.470-476
    • /
    • 2013
  • The aim of the current study was to predict shape recovery behavior of Ni-Ti shape memory alloy (SMA) wire after loading-unloading and after wire drawing. The superelasticity of SMA was analyzed by a hyper-elastic model for the Mullins effect using ABAQUS. Firstly, tensile tests and loading-unloading tests of the Ni-Ti SMA wire with a diameter 1.0 mm were performed using an MTS servo-hydraulic tester. The parameters for the Mullins effect were computed by ABAQUS based on curve-fitting of the loading-unloading test data. The proposed FE-model predicted the shape recovery of Ni-Ti SMA after wire drawing. Finally, the effectiveness of the model was verified by drawing experiments. The wire drawing experiments using the Ni-Ti SMA were conducted on a drawing machine(1ton, 50mm/s). In order to evaluate the shape recovery of Ni-Ti SMA, the drawn wires are annealed for 30min at $450^{\circ}C$.

Determination of Strain Energy Function of Rubber Materials Considering Stress Softening Behavior (응력연화거동을 고려한 고무 재료의 변형률 에너지 함수 결정)

  • Kim, W.S.;Hong, S.I.
    • Elastomers and Composites
    • /
    • v.42 no.3
    • /
    • pp.168-176
    • /
    • 2007
  • When the rubber vulcanizates reinforced with carbon black or silica are subjected to cyclic loading from its virgin state, the stress required on reloading is less than that on the initial loading. This stress softening phenomenon is referred to as the Mullins effect. The strain energy function of rubber vulcanizates was investigated using theory of pseudo-elasticity incorporated damage parameter that Ogden and Roxburgh have proposed to describe the damage-induced stress softening effect in rubber-like solids. The quasi-static cyclic loading test was performed using the NR-SBR vulcanizates reinforced with carbon black, and then the effect of a damage parameter to stress-strain curve in reloading and subsequent reloading paths was studied. The strain energy function of the rubber vulcanizates with a different filler content was also evaluated.

A Study on the Equi-biaxial Tension Test of Rubber Material (고무재료의 등 이축 인장시험에 관한 연구)

  • 김완두;김동진;김완수;이영신
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.95-104
    • /
    • 2003
  • The material properties of rubber was determined by the experiments of uniaxial tension, uniaxial compression, planer tension, equi-biaxial tension and volumetric compression. In compression test, it is difficult to obtain the pure state of compression stress and strain due to friction force between the specimen and compression platen. In this study, the stress and strain data from the equi-biaxial tension test were converted to compression stress and strain and compared to a pure state of simple compression data when friction was zero. The compression test device with the tapered platen was proposed to overcome the effect of friction. It was fumed out that the relationship of the stress and strain using the tapered platen was in close agreement with the pure compressive state.

Photofield-Effect in Amorphous InGaZnO TFTs

  • Fung, Tze-Ching;Chuang, Chiao-Shun;Mullins, Barry G.;Nomura, Kenji;Kamiya, Toshio;Shieh, Han-Ping David;Hosono, Hideo;Kanicki, Jerzy
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1208-1211
    • /
    • 2008
  • We study the amorphous In-Ga-Zn-O thin-film transistors (TFTs) properties under monochromatic illumination ($\lambda=420nm$) with different intensity. TFT off-state drain current ($I_{DS_off}$) was found to increase with the light intensity while field effect mobility ($\mu_{eff}$) is almost unchanged; only small change was observed for sub-threshold swing (S). Due to photo-generated charge trapping, a negative threshold voltage ($V_{th}$) shift is also observed. The photofield-effect analysis suggests a highly efficient UV photocurrent conversion in a-IGZO TFT. Finally, a-IGZO mid-gap density-of-states (DOS) was extracted and is more than an order lower than reported value for a-Si:H, which can explain a good switching properties of the a-IGZO TFTs.

  • PDF

Computational modelling for description of rubber-like materials with permanent deformation under cyclic loading

  • Guo, Z.Q.;Sluys, L.J.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.3
    • /
    • pp.317-328
    • /
    • 2008
  • When carbon-filled rubber specimens are subjected to cyclic loading, they do not return to their initial state after loading and subsequent unloading, but exhibit a residual strain or permanent deformation. We propose a specific form of the pseudo-elastic energy function to represent cyclic loading for incompressible, isotropic materials with stress softening and residual strain. The essence of the pseudo-elasticity theory is that material behaviour in the primary loading path is described by a common elastic strain energy function, and in unloading, reloading or secondary unloading paths by a different strain energy function. The switch between strain energy functions is controlled by the incorporation of a damage variable into the strain energy function. An extra term is added to describe the permanent deformation. The finite element implementation of the proposed model is presented in this paper. All parameters in the proposed model and elastic law can be easily estimated based on experimental data. The numerical analyses show that the results are in good agreement with experimental data.

Effect of Cure System on the Life-time of Hydrogenated NBR O-ring using Intermittent Compression Stress Relaxation(CSR) (간헐 압축응력 완화를 이용한 가교 구조가 hydrogenated NBR 오링의 수명에 미치는 영향 연구)

  • Lee, Jin-Hyok;Bae, Jong-Woo;Kim, Jung-Su;Hwang, Tae-Jun;Choi, Yu-Seok;Baek, Kwang-Sae;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.144-151
    • /
    • 2011
  • Intermittent CSR testing was used to investigate the degradation of a hydrogenated NBR(HNBR) O-rings, and also the prediction of its life-time. The cure system of HNBR O-ring was controlled as sulfur cure and peroxide cure system. An intermittent CSR jig was designed taking into consideration the O-ring's environment under use. The testing allowed observation of the effects of friction, heat loss, and stress relaxation by the Mullins effect. Degradation of O-rings by thermal aging was observed between 100 and $120^{\circ}C$. In the temperature range of $100-120^{\circ}C$, O-rings showed linear degradation behavior and satisfied the Arrhenius relationship. The activation energy of HNBR-S was about 70.6 kJ/mol. From Arrhenius plots, predicted life-times of HNBR-S O-ring were 31.1 years and 33.7 years for 50% and 40% failure conditions, respectively. In case of HNBR-P, the activation energy was about 72.1kJ/mol, and predicted life-times were 34.0 years and 36.5 years for 50% and 40% failure conditions, respectively. The peroxide cure system showed slower degradation rate and higher activation energy than the sulfur cure system.

Mechanical Testing and Nonlinear Material Properties for Finite Element Analysis of Rubber Components (고무부품의 유한요소해석을 위한 재료시험 및 비선형 재료물성에 관한 연구)

  • Kim, Wan-Doo;Kim, Wan-Soo;Kim, Dong-Jin;Woo, Chang-Soo;Lee, Hak-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.848-859
    • /
    • 2004
  • Mechanical testing methods to determine the material constants for large deformation nonlinear finite element analysis were demonstrated for natural rubber. Uniaxial tension, uniaxial compression, equi-biaxial tension and pure shear tests of rubber specimens are performed to achieve the stress-strain curves. The stress-strain curves are obtained after between 5 and 10 cycles to consider the Mullins effect. Mooney and Ogden strain-energy density functions, which are typical form of the hyperelastic material, are determined and compared with each other. The material constants using only uniaxial tension data are about 20% higher than those obtained by any other test data set. The experimental equations of shear elastic modulus on the hardness and maximum strain are presented using multiple regression method. Large deformation finite element analysis of automotive transmission mount using different material constants is performed and the load-displacement curves are compared with experiments. The selection of material constant in large deformation finite element analysis depend on the strain level of component in service.

Life-time Prediction of a FKM O-ring using Intermittent Compression Stress Relaxation (CSR) and Time-temperature Superposition (TTS) Principle (간헐 압축응력 완화와 시간-온도 중첩 원리를 이용한 FKM 오링의 수명 예측 연구)

  • Lee, Jin-Hyok;Bae, Jong-Woo;Kim, Jung-Su;Hwang, Tae-Jun;Park, Sung-Doo;Park, Sung-Han;Min, Yeo-Tae;Kim, Won-Ho;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.263-271
    • /
    • 2010
  • Intermittent CSR testing was used to investigate the degradation of an FKM O-ring, also the prediction of its life-time. An intermittent CSR jig was designed taking into consideration the O-ring's environment under use. The testing allowed observation of the effects of friction, heat loss, and stress relaxation by the Mullins effect. Degradation of O-rings by thermal aging was observed between 60 and $160^{\circ}C$. In the high temperature of range ($100-160^{\circ}C$) O-rings showed linear degradation behavior and satisfied the Arrhenius relationship. The activation energy was about 60.2 kJ/mol. From Arrhenius plots, predicted life-times were 43.3 years and 69.9 years for 50% and 40% failure conditions, respectively. Based on TTS (time-temperature superposition) principle, degradation was observed at $60^{\circ}C$, and could save testing time. Between 60 and $100^{\circ}C$ the activation energy decreased to 48.3 kJ/mol. WLF(William-Landel-Ferry) plot confirmed that O-rings show non-linear degradation behavior under $80^{\circ}C$. The life-time of O-rings predicted by TTS principle was 19.1 years and 25.2 years for each failure condition. The life-time predicted by TTS principle is more conservative than that from the Arrhenius relationship.