• 제목/요약/키워드: Muddy Deposition

검색결과 14건 처리시간 0.024초

Transportation and Deposition of Modern Sediments in the Southern Yellow Sea

  • Shi, Xuefa;Chen, Zhihua;Cheng, Zhenbo;Cai, Deling;Bu, Wenrui;Wang, Kunshan;Wei, Jianwei;Yi, Hi-Il
    • Journal of the korean society of oceanography
    • /
    • 제39권1호
    • /
    • pp.57-71
    • /
    • 2004
  • Based on the data obtained under the China-Korea joint project (1997-2001) and historic observations, the distribution, transportation and sedimentation of sediment in the southern Yellow Sea (SYS) are discussed, and the controversial formation mechanism of muddy sediments is also explored. The sediment transport trend analysis indicates that the net transport direction of sediment in the central SYS (a fine-grained sediment deposited area) points to $123.4^{\circ}E,\;35.1^{\circ}N$, which is a possible sedimentation center in the central SYS. The sediment transport pattern is verified by the distribution of total suspended matter (TSM) concentration and ${\delta}^{13}C$ values of particulate organic carbon (POC), the latter indicates that the bottom water plays a more important role than the surface water in transporting the terrigenous material to the central deep-water area of the SYS, and the Yellow Sea circulation is an important control factor for the sediment transport pattern in the SYS. The carbon isotope signals of organic matter in sediments indicate that the Shandong subaqueous delta has high sedimentation rate and the deposited sediments originate mainly from the modern Yellow River. The terrigenous sediments in deep-water area of the SYS originate mainly from the old Yellow River and the modern Yellow River, and only a small portion originates from the modern Yangtze River. The analytical results of TSM and stable carbon isotopes are further confirmed by another independent tracer of sediment source, polycyclic aromatic hydrocarbons (PAHs). Five light mineral provinces in the SYS can be identified and they indicate inhomogeneity in sources and sedimentary environment. The modern shelf sedimentary processes in the SYS are controlled by shelf dynamic factors. The muddy depositional systems are produced in the shelf low-energy environments, which are controlled by some meso-scale cyclonic eddies (cold eddies) in the central SYS and the area southwest of the Cheju Island. On the contrary, an anticyclonic muddy depositional system (warm eddy sediment) appears in the southeast of the SYS (the area northwest of the Cheju Island). In this study, we give the cyclonic and anticyclonic eddy sedimentation patterns.

한국 동해 대륙붕 표층퇴적물의 분포와 특성 (Distribution and Characteristics of Surface Sediments on the Continental Shelf off the Eastern Coast of Korea)

  • Yong Ahn Park;Chang Sik Lee;Chang Bok Lee
    • 한국제4기학회지
    • /
    • 제4권1호
    • /
    • pp.15-26
    • /
    • 1990
  • 한국 동해 대륙붕 표층 퇴적물은 대부분 육성기원 쇄설성 퇴적물로 이루어져있으며, 이 퇴적물은 홀로세 해수면 변동의 영향을 잘 나타내고 있다. 퇴적물은 연안이나 내대륙붕에서는 이질사 혹은 사닐니로 이루어져 있고 혹은 자갈들이 나타나는 경우도 있으며, 외해로 갈수록 세립화하는 경향을 보여 외대륙붕에는 대부분이 세립의 이질 퇴적물로 이루어져 있다. 그러나 수심 약 130-150m의 붕단 부근에서는 사질, 니질사, 역니질사 등의 조립 퇴적물이 나타나며 이들은 소위 위스콘신 빙하기의 해수면이 낮았을 때 수심이 얕은 연안환경에서 퇴적된 잔류퇴적물로 생각된다. 연구해역 대륙붕에서의 현생 퇴적물 분포는 파도나 해류 등에 의하여 연안이나 수십이 얕은 곳에는 세립퇴적물이 쌓이지 못한 것으로 생각되며, 특히 대마해류에서 분리된 동한난류는 남해로부터 동해 대륙붕으로 세립퇴적물을 운반하고 분포시키는 데 큰 영향을 미칠 것으로 추정된다.

  • PDF

SATEEC과 USPED를 이용한 토양 유실량 산정 및 우선관리 유역 선정 평가 (Estimation of Soil Erosion using SATEEC and USPED and Determination of Soil Erosion Hot Spot Watershed)

  • 서일규;박윤식;김남원;문종필;류지철;옥용식;김기성;임경재
    • 한국물환경학회지
    • /
    • 제26권3호
    • /
    • pp.497-506
    • /
    • 2010
  • Severe muddy water problem has been the hot issue in Korea. Because of increased nonpoint source pollutions at Kangwon province, best soil erosion management system is required to reduce inflow of nonpoint source pollutions into the waterbodies. The USLE-based SATEEC system have been developed and enhanced for soil erosion and sediment yield estimation. However, the SATEEC cannot estimate soil depositions depending on topography in the watershed, while the USPED estimates soil erosion and deposition using sediment transport capacity of the surface runoff. In this study, the SATEEC and USPED were used to determine soil erosion hot spot subbasins. For this, 54 subbasins were delineated. In general, soil erosion hot spot subbasins were identified similarly with SATEEC and USPED. However, depending on erosion and deposition patterns in each subbasin. USPED estimated soil erosion hot spot subbasins didn't match those estimated with SATEEC. For some subbasins, much deposition was expected than erosion. This indicates that SATEEC estimated soil erosion values may be overestimated for these subbasins. Thus, care should be taken when understanding soil erosion status in the watershed based on USLE-based SATEEC results. In addition, the USPED results could be used to identify the site-specific soil erosion best management practices. If the USPED and USLE-based SATEEC are combined, it would help determining soil erosion hot spot subwatersheds in economic and environmental perspectives.

강화 남부 갯벌의 퇴적환경 변화 (Changes of Sedimentary Environments in the Southern Tidal Flat of Kanghwa Island)

  • 우한준;제종길
    • Ocean and Polar Research
    • /
    • 제24권4호
    • /
    • pp.331-343
    • /
    • 2002
  • The southern tidal flat of Kanghwa Island with an area of approximately $90km^2$ is one of the biggest flats on the west coast of Korea. Surface sediments for sedimentary analyses were sampled at 83 stations in August 1997, September 1999 and August 2000. The very poorly-sorted mud sediments were predominant in the eastern part of the tidal flat, whereas the poorly-sorted sand-mud mixed sediments were dominant in the western part. The area of muddy sediment distribution diminished, but that of sandy mud sediment extended to southeastward tidal flat for three years. In the western part of tidal flat, deposition occurred during the period of spring to summer, whereas erosion occurred in winter. Sediment accumulation rates during three years indicated that the sediments deposited continuously in the eastern part of tidal flat, whereas eroded in the western part of tidal flat. Recently, construction of artificial structures such as new airport, island-connecting bridges and dikes near the tidal flat might change tidal current and river flow pattern. In order to reduce the ecological damage and to preserve tidal-flat environment, it is necessary to Investigate long-term impacts on sedimentary environment and ecology.

Volcaniclastic Sedimentation of the Sejong Formation (Late Paleocene-Eocene), Barton Peninsula, King George Island, Antarctica

  • Yoo, Chan-Min;Choe, Moon-Young;Jo, Hyung-Rae;Kim, Yae-Dong;Kim, Ki-Hyune
    • Ocean and Polar Research
    • /
    • 제23권2호
    • /
    • pp.97-107
    • /
    • 2001
  • The Sejong Formation of Late Paleocene to Eocene is a lower volcaniclastic sequence unconformably overlain by upper volcanic sequence, and distributed along the southern and southeastern cliffs of the Barton Peninsula. The Sejong Formation is divided into five sedimentary facies; disorganized matrix-supported conglomerate (Facies A), disorganized clast-supported conglomerate (Facies B), stratified clast-supported conglomerate (Facies C), thin-bedded sandstone (Facies D), and lapilli tuff (Facies E), based on sedimentary textures, primary sedimentary structures and bed geometries. Individual sedimentary facies is characterized by distinct sedimentary process such as gravel-bearing mudflows or muddy debris flows (Facies A), cohesionless debris flows (Facies B),unconfined or poorly confined hyperconcentrated flood flows and sheet floods (Facies C), subordinate streamflows (Facies D), and pyroclastic flows (Facies E). Deposition of the Sejong Formation was closely related to volcanic activity which occurred around the sedimentary basin. Four different phases of sediment filling were identified from constituting sedimentary facies. Thick conglomerate and sandstone were deposited during inter-eruptive phases (stages 1, 3 and 4), whereas lapilli tuff was formed by pyroclastic flows during active volcanism (stage 2). These records indicate that active volcanism occurred around the Barton Peninsula during Late Paleocene to Eocene.

  • PDF

낙동강 하구역의 계절적인 퇴적환경 변화특성 (Characteristics of Seasonal Variation to Sedimentary Environment at the Estuary area of the Nakdong)

  • 윤은찬;이종섭
    • 한국해안·해양공학회논문집
    • /
    • 제20권4호
    • /
    • pp.372-389
    • /
    • 2008
  • 본 연구는 낙동강 하구역에서 상세한 격자망을 구성하여 표층 퇴적물을 계절별로 채취하였다. 퇴적물의 계절적인 변화특성과 장기간의 변화특성을 조사하기 위하여 입도분석과 기존 자료들과의 비교를 수행하였다. 조사결과, 퇴적물 분포는 계절적으로 변화가 크게 나타나고 낙동강 하구둑의 방류량과 입사파랑의 영향을 크게 받는 것으로 나타났다. 사질퇴적물들은 연간 탁월 파향인 ENE 계열 파랑의 영향으로 낙동강 하구역의 서쪽 진우도 전면으로의 이동이 우세하게 나타났고 니질퇴적물은 흐름을 따라 수심이 깊은 외해쪽으로 이동하여 퇴적되는 것으로 나타났다. 현재의 낙동강 하구역의 퇴적상은 과거의 연구 결과들과 비교하여 커다란 차이를 보였다.

걸리 침식 평가를 위한 SATEEC, nLS, USPED 연계 시스템의 개발 및 적용 (Development and Application of Integrated System with SATEEC, nLS and USPED for Gully Erosion Evaluation)

  • 강현우;박윤식;김남원;옥용식;장원석;류지철;김기성;임경재
    • 한국물환경학회지
    • /
    • 제26권4호
    • /
    • pp.637-647
    • /
    • 2010
  • The Universal Soil Loss Equation (USLE)-based modeling systems have been widely used to simulate soil erosion studies. However the GIS-based USLE modeling systems have limitation in gully erosion evaluation which is one of the most important factor in soil erosion estimation. In this study, the integrated soil erosion evaluation system using with Sediment Assessment Tool for Effective Erosion Control (SATEEC) system, nLS and Unit Stream Power-based Erosion/Deposition (USPED) model was developed to simulate gully erosion. Gully head location using nLS model, USPED for gully erosion, and the SATEEC estimated sheet and rill erosion were evaluated and combined together with the integrated soil erosion evaluation system. This system was applied to the Haean-myeon watershed, annual average sediment-yield considering sheet, rill and gully erosion was simulated as 101,933 ton/year at the study watershed. if the integrated soil erosion evaluation system is calibrated and validated with the measured data, this system could be efficiently used in developing site-specific soil erosion best management system to reduce soil erosion and muddy water inflow into the receiving waterbody.

한국 서해안 강화 남부 갯벌 퇴적물 및 지형의 장기적인 변화 (Long-term Changes of Sediment and Topography at the Southern Kanghwa Tidal Flat, West Coast of Korea)

  • 우한준
    • 한국습지학회지
    • /
    • 제15권4호
    • /
    • pp.493-500
    • /
    • 2013
  • 강화 남부 갯벌의 장기적인 퇴적환경 변화를 파악하기 위하여 1997년과 2011년 여름철 표층 퇴적물의 분포와 1998년 4월과 2013년 3월의 갯벌 고도를 비교하였다. 표층퇴적물은 1997년에 동부의 펄, 서부의 모래 펄 퇴적물이 우세하였으나, 2011년에는 동부의 선두리와 동검도 갯벌은 펄과 모래 펄, 중부의 동막리 갯벌은 모래 펄, 그리고 서부의 여차리와 장화리 갯벌은 모래와 펄 모래 퇴적물이 우세하게 분포하였다. 지난 14년 동안 펄 퇴적물 면적은 감소하였으나, 모래와 펄 혼합 퇴적물의 면적은 동쪽으로 확장되었다. 갯벌의 장기적인 지형 변화는 지난 15년 동안 동막리와 여차리 갯벌은 퇴적, 장화리 갯벌은 침식된 것으로 나타났다. 이러한 변화들은 1990년대 이후 강화 남부 갯벌 주변에 여러 종류의 인공구조물건설에 의하여 지역적인 수리적 변화가 영향을 주었을 것이다.

Sedimentary Facies and Architecture of a Gigantic Gravelly Submarine Channel System in a Cretaceous Foredeep Trough (the Magallanes Basin, Southern Chile)

  • Sohn, Young Kwan;Jo, Hyung Rae;Woo, Jusun;Kim, Young-Hwan G.;Choe, Moon Young
    • Ocean and Polar Research
    • /
    • 제39권2호
    • /
    • pp.85-106
    • /
    • 2017
  • The Lago Sofia conglomerate in southern Chile is a deep-marine gravelly deposit, which is hundreds of meters thick and kilometers wide and extends laterally for more than 100 km, filling the foredeep trough of the Cretaceous Magallanes Basin. For understanding the depositional processes and environments of this gigantic deep-sea conglomerate, detailed analyses on sedimentary facies, architecture and paleoflow patterns were carried out, highlighting the differences between the northern (Lago Pehoe and Lago Goic areas) and southern (Lago Sofia area) parts of the study area. The conglomerate bodies in the northern part occur as relatively thin (< 100 m thick), multiple units intervened by thick mudstone-dominated sequences. They show paleoflows toward ENE and S to SW, displaying a converging drainage pattern. In the southern part, the conglomerate bodies are vertically interconnected and form a thick (> 400 m thick) conglomerate sequence with rare intervening fine-grained deposits. Paleoflows are toward SW. The north-to-south variations are also distinct in sedimentary facies. The conglomerate bodies in the southern part are mainly composed of clast-supported conglomerate with sandy matrix, which is interpreted to be deposited from highly concentrated bedload layers under turbidity currents. Those in the northern part are dominated by matrix- to clast-supported conglomerate with muddy matrix, which is interpreted as the products of composite mass flows comprising a turbidity current, a gravelly hyperconcentrated flow and a mud-rich debris flow. All these characteristics suggest that the Lago Sofia conglomerate was formed in centripetally converging submarine channels, not in centrifugally diverging channels of submarine fans. The tributaries in the north were dominated by mass flows, probably affected by channel-bank failures or basin-marginal slope instability processes. In contrast, the trunk channel in the south was mostly filled by tractive processes, which resulted in the vertical and lateral accretion of gravel bars, deposition of gravel dunes and filling of scours and channels, similar to deposits of terrestrial gravel-bed rivers. The trunk channel developed along the axis of foredeep trough and its confinement within the trough is probably responsible for the thick, interconnected channel fills. The large-scale architecture of the trunk-channel fills shows an eastward offset stacking pattern, suggesting that the channel migrated eastwards most likely due to the uplift of the Andean Cordillera.

한국 서해 천수만 선현세 간월도 퇴적층의 퇴적환경 (Sedimentary Environments of Pre-Holocene Kanweoldo Deposit in Cheonsu Bay, Western Coast of Korea)

  • 정회수;엄인권;임동일
    • 한국해양학회지:바다
    • /
    • 제7권1호
    • /
    • pp.32-42
    • /
    • 2002
  • 한국 서해 천수만 조간대 퇴적체는 약 20m 두께에 달하며, 지난 빙하기동안 노출되어 형성된 부정합면을 경계로 상위의 현세 조간대 퇴적층(Unit M1)과 하위의 후기 플라이스토세 간월도층(Unit M2)으로 구성된다. 퇴적단위 M1은 간월도층을 하부층으로하는 부정합면 위로 니질의 상부 조간대층과 사니질 또는 니사질의 혼합 조간대층이 순차적으로 발달하는 상향조립화의 해침층서를 갖는다. 퇴적단위 M2 퇴적층은 그 두께가 약 14 m에 이르며, 퇴적후 노출에 의한 풍화의 정도에 따라 상부 산화대층과 하부의 비산화대층으로 구분된다. 전반적으로 퇴적물은 니질 또는 사니질 입자로 구성되며, 조수 리듬 퇴적구조, 플라저층리, 엽층리, 게 구멍 화석, 천해성 와편모조류 등과 같은 조수퇴적 기원의 증거들을 함유하고 있다. 이러한 결과들은 퇴적단위 M2의 간월도 퇴적층이 상대적으로 해수면이 높았던 선현세 간빙기 동안 퇴적된 조간대 퇴적층임을 지시한다. 한편, 퇴적단위 M2의 상부 3${\sim}$4 m는 퇴적 후 초기현세까지 계속되는 저해수면 동안 대기중에 노출되어 풍화 및 산화작용으로 인하여 퇴적물의 특성이 변질된 층으로 해석되며, 이는 서해 연안 퇴적층에서 현세와 선현세를 구분해주는 뚜렷한 층서적 건층으로 제시된다.