Estimation of Soil Erosion using SATEEC and USPED and Determination of Soil Erosion Hot Spot Watershed

SATEEC과 USPED를 이용한 토양 유실량 산정 및 우선관리 유역 선정 평가

  • Seo, Il Kyu (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Park, Youn Sik (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Kim, Nam Won (Korea Institute of Construction Technology) ;
  • Moon, Jong Pil (National Academy of Agriculture Science) ;
  • Ryu, Ji Chul (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Ok, Yong Sik (Department of Biological Environment, Kangwon National University) ;
  • Kim, Ki-Sung (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Lim, Kyoung Jae (Department of Regional Infrastructure Engineering, Kangwon National University)
  • 서일규 (강원대학교 지역건설공학과) ;
  • 박윤식 (강원대학교 지역건설공학과) ;
  • 김남원 (한국건설기술연구원) ;
  • 문종필 (농촌진흥청 국립농업과학원) ;
  • 류지철 (강원대학교 지역건설공학과) ;
  • 옥용식 (강원대학교 바이오자원환경학과) ;
  • 김기성 (강원대학교 지역건설공학과) ;
  • 임경재 (강원대학교 지역건설공학과)
  • Received : 2010.01.14
  • Accepted : 2010.03.22
  • Published : 2010.05.30

Abstract

Severe muddy water problem has been the hot issue in Korea. Because of increased nonpoint source pollutions at Kangwon province, best soil erosion management system is required to reduce inflow of nonpoint source pollutions into the waterbodies. The USLE-based SATEEC system have been developed and enhanced for soil erosion and sediment yield estimation. However, the SATEEC cannot estimate soil depositions depending on topography in the watershed, while the USPED estimates soil erosion and deposition using sediment transport capacity of the surface runoff. In this study, the SATEEC and USPED were used to determine soil erosion hot spot subbasins. For this, 54 subbasins were delineated. In general, soil erosion hot spot subbasins were identified similarly with SATEEC and USPED. However, depending on erosion and deposition patterns in each subbasin. USPED estimated soil erosion hot spot subbasins didn't match those estimated with SATEEC. For some subbasins, much deposition was expected than erosion. This indicates that SATEEC estimated soil erosion values may be overestimated for these subbasins. Thus, care should be taken when understanding soil erosion status in the watershed based on USLE-based SATEEC results. In addition, the USPED results could be used to identify the site-specific soil erosion best management practices. If the USPED and USLE-based SATEEC are combined, it would help determining soil erosion hot spot subwatersheds in economic and environmental perspectives.

Keywords

References

  1. 김진호, 한국현, 이종식(2008). 농촌유역의 강우사상별 농업 비점오염물질 유출특성. 수질보전 한국물환경학회지, 24(1), pp. 69-77.
  2. 박철수(1999). 율문천 소유역에서 토지이용에 따른 불특정 오염 Monitoring. 석사학위논문, 강원대학교.
  3. 신은성, 최지용, 이동훈(2001). 농업지역의 비점오염물질 유출특성에 관한 연구. 수질보전 한국물환경학회지, 17(3), pp. 299-311.
  4. 임경재, 최중대, 김기성, 사공명, Engel, B. A. (2003). 소유역의 효과적인 침식조절을 위한 유사평가 툴(SATEEC)의 개발. 한국농공학회지, 45(5) pp. 85-96
  5. 정영상, 권영기, 임형식, 하상건, 양재의(1999). 강원도 경사지 토양 유실 예측용 신USLE의 적용을 위한 강수 인자와 토양 침식성 인자의 검토. 韓土肥誌, 32(1), pp. 31-38.
  6. 정영상, 신재성, 신용화(1976). 경사지 토양의 침식인자에 관하여. 한국토양비료학회지, 9(2), pp. 107-113.
  7. 정영상, 양재의, 박철수, 권영기, 주영규(1998). 북한강 율문천 소유역에서 수질 변화와 농업활동에 의한 N,P 부하량. 韓土肥誌, 31(2), pp. 170-176.
  8. 정필균, 고문환, 엄기태(1984). 토양유실량 예측을 위한 작부인자 검토. 한국토양비료학회지, 18(1), pp. 7-13.
  9. Alimohammadi. A., Sheshangosht, S., and Soltani, M. J. (2006). Evaluation of relations between DEM-Based USPED Model Output and Satellite-based spectralindices. Conference Proceedings of Map India 2006. http://www.gisdevelopment.net/proceedings/mapindia/2006/index.htm/.
  10. Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R. (1998). Large are hydrologic modeling and assessment part I: model development. Journal of American Water Resources Association, 34(1), pp. 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  11. Blanco, A. C. and Nadaoka, K. (2006). A comparative assessment and estimation of potential soil erosion rates and patterns in Laguna Lake watershedusing three models: Towards development of and erosion indexsystem for integrated watershed-lake management.
  12. Flanagan, D. C. and Nearing, M. A. (1995). USDA water erosion prediction project: hillslope profile and watershed model documentation. NSERL Report No. 10. USDA-ARS National Soil Erosion Research Laboratory, West Lafayette, IN 47907-1194.
  13. Foster, G. R., Renard, K. G., Yoder, D. C., McCool, D. K., and Weesies, G. A. (1996). User's guide, Soil & Water Cons. Soc.
  14. Lim, K. J., Sagong, M., Eagel, B. A., Zhenxu, T., Choi, J. D., and Kim, K. S. (2005). GIS-based sediment assessment tool, Catena, 64, pp. 61-80. https://doi.org/10.1016/j.catena.2005.06.013
  15. Mitasova, H., Hofierka, J., Zlocha, M., and Iverson, L. R. (1996). Modeling topographic potential for erosion and deposition using GIS. Int. Journal of Geographical Information Science, 10(5), pp. 629-641. (reply to a comment to this paper appears in 1997 in Int. Journal of Geographical Information Science, 11(6).
  16. Mitas, L. and Mitasova, H. (1998). Distributed erosion modeling for effective erosion prevention. Water Resources Research, 34(3), pp. 505-516. https://doi.org/10.1029/97WR03347
  17. Moore, I. and Burch, G. (1986a). Physical Basis of the Length-Slope Factor in the Universal Soil Loss Equation. Soil Science Society of America Journal, 50, pp. 1294-1298. https://doi.org/10.2136/sssaj1986.03615995005000050042x
  18. Moore, I. and Burch, G. (1986b). Modeling Erosion and Deposition: Topographic Effects. TRANS of the ASAE, 29(6), pp. 1624-1630, 1640.
  19. Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., Chisci, G., Torri, D., and Styczen, M. E. (1998). The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 23, pp. 527-544. https://doi.org/10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5
  20. Pistocchi, A., Cassani, G., and Zani, O. (2002). Use of the USPED model for mapping soil erosion and managingbest land conservation practices, In A. E. Rizzoli and A. J. Jakeman (eds.), Integrated Assessment and Decision Support, Proceedings of the First Biennial Meeting of the international Environmental Modelling and Software Society, 1, pp. 163-168. iEMSs, 2002.
  21. Warren, S. D., Mitasova, H., Hohmann, M. G., Landsberger, S., Iskander, F. Y., Ruzycki, T. S., and Senseman, G. M. (2005). Validation of a 3-D enhancement of the Universal Soil Loss Equation for prediction of soil erosion and sediment deposition. Catena, 64, pp. 281-296. https://doi.org/10.1016/j.catena.2005.08.010
  22. Wischmeier, W. H. and Smith, D. D. (1978). Predicting rainfall erosion losses. A Guide to Conservation Planning. The USDA Agricultural Handbook No. 537.
  23. Williams, J. R. (1975). Sediment Yield Prediction with Universal Equation using Runoff Energy Factor, Present and Prospective Technology for Predicting Sediment Yield and Sources, U.S Department of Agriclture, Washington, D.C. pp. 244-252.
  24. Zaluski, M. H., Consort, J. J., and Antonioli, S. B. (2003). Soil Erosion and Deposition Modeling in ArcGIS. In Business and Industry Symposium, 108-113. The Society for Modeling and Simulation International (SCS).