• Title/Summary/Keyword: Mucosal immune response

Search Result 68, Processing Time 0.021 seconds

Mucosal Immunoadjuvant Activity of Korean Mistletoe Lectin-C (한국산 겨우살이 렉틴의 경구투여에 의한 항원 특이적 점막면역 증진 효과)

  • Kim, Jin-Chul;Yoon, Taek-Joon;Song, Tae-Jun;Kim, Young-Hoon;An, Hyo-Sun;Kim, Jong-Bae
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.72-76
    • /
    • 2011
  • The adjuvant effects of Korean mistletoe lectin-C (KML-C) were investigated following the oral administration of KML-C with ovalbumin (OVA) as an antigen. Mice were orally immunized with OVA alone or admixed with various doses of KML-C or cholera toxin (CT), and the titer of OVA-specific antibody in the serum and mucosal secretions were determined. OVA+KML-C-treated mice showed high titers of IgA specific to CT in mucosal secretions. The antibody titers in the serum of OVA+KML-C-treated mice were comparable to those in the serum of OVA+CT-treated mice. When mice were immunized with OVA+KML-C or with CT alone and subsequently injected with OVA on the footpads after the primary immunization, they showed a more significant increase in delayed-type hypersensitivity reactions than when they were administered CT alone. These results suggest that KML-C is a potent immunoadjuvant that enhances both humoral and cellular immunity by the mucosal immune system.

Enhancement of Mucosal Immune Functions by Dietary Spirulina platensis in Human and Animals

  • Osamu Hayashi;Kyoko Ishii;Chinami Kawamura;Hei, Shi-Yen;Bao, Ning-Ye;Tomohiro Hirahashi;Toshimitsu Katoh
    • Nutritional Sciences
    • /
    • v.7 no.1
    • /
    • pp.31-34
    • /
    • 2004
  • This paper reviews the effects of Spirulina platensis and its extracts and phycocyanin, a blue photosynthetic pigment protein in Spirulina on the mucosal immune functions in humans and animals as follows: TEX>$\bullet$ IgA antibody response and other classes in mucosal immunity of mice treated with Spirulina platensis and its extract. $\bullet$ Effect of Spirulina phycocyanin ingestion on the mucosal antibody responses in mice. - Distinct effects of phycocyanin on secretory IgA and allergic IgE antibody responses in mice following oral immunization with antigen-entrapped biodegradable microparticles. $\bullet$ Influence of dietary Spirulina platensis on IgA level in human saliva. $\bullet$ A study on enhancement of bone-marrow cell-proliferation and differentiation by Spirulina platensis in mice: in vivo and in vitro study

Enhancement of Immunological Activities in Mice by Oral Administration of Pectic Polysaccharides from Eleutherococcus senticosus

  • Sung, Ji-Yun;Yoon, Taek-Joon;Yu, Kwang-Won;Lee, Kwang-Ho;Lee, Ho
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.117-121
    • /
    • 2006
  • Ability of pectic polysaccharides isolated from Eleutherococcus senticosus EN-3 to inhibit tumor metastasis and induce antigen-specific immune response after oral administration in mice was assessed. Consecutive oral administration of EN-3 before tumor inoculation dramatically inhibited tumor metastasis produced by colon26-M3.1 and B16-BL6 cells. When Peyer's patch cells isolated from mouse intestine were co-cultured with EN-3, proliferation of Peyer's patch cells was induced. Mice co-administered with EN-3 and ovalbumin (OVA) showed significantly higher production of OVA-specific IgA in intestinal washing as well as IgG in serum than those administered with OVA alone. Payer's patch cells of mice immunized with OVA plus EN-3 showed much higher proliferating activity than those of mice immunized with OVA alone. Proliferating activity increased dose-dependently, indicating EN-3 specifically enhanced mucosal immune response to OVA. These results suggested EN-3 could significantly stimulate Peyer's patch cells either non-specifically or antigen-specifically, possibly playing important role in enhancement of mucosal and systemic immune systems.

Gut Microbiota in Inflammatory Bowel Disease

  • Shim, Jung Ok
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.16 no.1
    • /
    • pp.17-21
    • /
    • 2013
  • The gut mucosal barrier plays an important role in maintaining a delicate immune homeostasis. The pathogenesis of inflammatory bowel disease (IBD) is considered to involve a defective mucosal immunity along with a genetic predisposition. Recent views have suggested an excessive response to components of the gut microbiota in IBD. A condition of "dysbiosis", with alterations of the gut microbial composition, has been observed in patients with IBD. In this article, the author review recent studies of gut microbiota in IBD, particularly the importance of the gut microbiota in the pathogenesis of pediatric IBD.

The changes of immune-related molecules within the ileal mucosa of piglets infected with porcine circovirus type 2

  • Shi, Fengyang;Li, Qiuming;Zou, Zhanming;Wang, Yang;Hou, Xiaolin;Zhang, Yonghong;Song, Qinye;Zhou, Shuanghai;Li, Huanrong
    • Journal of Veterinary Science
    • /
    • v.21 no.5
    • /
    • pp.78.1-78.15
    • /
    • 2020
  • Background: Enteritis is one of the most frequently reported symptoms in piglets infected with porcine circovirus type 2 (PCV2), but the immunopathogenesis has not been reported. Objectives: This study examined the effect of a PCV2 infection on the intestinal mucosal immune function through morphological observations and immune-related molecular detection. Methods: Morphological changes within the ileum of piglets during a PCV2 infection were observed. The expression of the related-molecules was analyzed using a gene chip. The immunocyte subsets were analyzed by flow cytometry. The secretory immunoglobulin A (SIgA) content was analyzed by enzyme-linked immunosorbent assay. Results: The PCV2 infection caused ileal villus damage, intestinal epithelial cells exfoliation, and an increase in lymphocytes in the lamina propria at 21 days post-infection. Differentially expressed genes occurred in the defense response, inflammatory response, and the complement and coagulation cascade reactions. Most of them were downregulated significantly at the induction site and upregulated at the effector site. The genes associated with SIgA production were downregulated significantly at the induction site. In contrast, the expression of the Toll-like receptor-related genes was upregulated significantly at the effector site. The frequencies of dendritic cells, B cells, and CD8+T cells were upregulated at the 2 sites. The SIgA content decreased significantly in the ileal mucosa. Conclusions: PCV2 infections can cause damage to the ileum that is associated with changes in immune-related gene expression, immune-related cell subsets, and SIgA production. These findings elucidated the molecular changes in the ileum after a PCV2 infection from the perspective of intestinal mucosal immunity, which provides insights into a further study for PCV2-induced enteritis.

Effect of Hwang-Ryeon-Hae-Dok-Tang on the Release of IL-8 in Human Nasal Mucosal Fibroblast (黃連解毒湯의 사람 비점막 섬유아세포 IL-8 분비에 대한 효과)

  • Lee, In-su;Kim, Hee-taek;Lee, Eun-yong;Kim, E-hwa;Ryu, Ju-hyun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.16 no.3
    • /
    • pp.68-81
    • /
    • 2003
  • It is proposed that Hwang-Ryeon-Hae-Dok-Tang may modulate the immune response on allergy or asthma. Human nasal mucosal fibroblasts are a rich source cytokines, inflammatory mediators, and chemokines. Chemokines are important for the recruitment of leukocytes to sites of infection, which is essential in host defense. Objectives : The objective of this study was to investigate the effect of Hwang-Ryeon-Hae-Dok-Tang(HH) on the release of the IL-8 chemokine in human nasal mucosal fibroblasts after stimulation with cytokines like interleukin-4(IL-4), tumor necrosis factor- (TNF- ), interferon- (lFN- ), and interle ukin-l (IL-I ). Methods : To detect the release of IL-8, enzyme-linked immunosorbent assay(ELISA) kit was performed. The cytotoxicity was measured by MTT assay. Results : HH significantly inhibited the secretion of IL-8 with a dose-dependant manner. The effective dosage did not have the cytotoxicity on human nasal mucosal fibroblasts Conclusions : Results of our study show that HH would play an important role in modulation of IL-8 in human nasal mucosal fibroblasts.

  • PDF

Plants as platforms for the production of vaccine antigens (항원 생산 기반으로서의 식물 연구)

  • Youm, Jung-Won;Jeon, Jae-Heung;Joung, Hyouk;Kim, Hyun-Soon
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.250-261
    • /
    • 2010
  • The expression of vaccine antigens in transgenic plants has the potential to provide a convenient, stable, safe approach for oral vaccination alternative to traditional parenteral vaccines. Over the past two decades, many different vaccine antigens expressed via the plant nuclear genome have elicited appropriate immunoglobulin responses and have conferred protection upon oral delivery. Up to date, efforts to produce antigen proteins in plants have focused on potato, tobacco, tomato, banana, and seed (maize, rice, soybean, etc). The choice of promoters affects transgene transcription, resulting in changes not only in concentration, but also in the stage tissue and cell specificity of its expression. Inclusion of mucosal adjuvants during immunization with the vaccine antigen has been an important step towards the success of plant-derived vaccines. In animal and Phase I clinical trials several plant-derived vaccine antigens have been found to be safe and induce sufficiently high immune response. Future areas of research should further characterize the induction of the mucosal immune response and appropriate dosage for delivery system of animal and human vaccines. This article reviews the current status of development in the area of the use of plant for the development of oral vaccines.

Application of Antimicrobial Peptide LL-37 as an Adjuvant for Middle East Respiratory Syndrome-Coronavirus Antigen Induces an Efficient Protective Immune Response Against Viral Infection After Intranasal Immunization

  • Ju Kim;Ye Lin Yang;Yongsu Jeong;Yong-Suk Jang
    • IMMUNE NETWORK
    • /
    • v.22 no.5
    • /
    • pp.41.1-41.16
    • /
    • 2022
  • The human antimicrobial peptide LL-37 has chemotactic and modulatory activities in various immune cells, including dendritic cells. Because of its characteristics, LL-37 can be considered an adjuvant for vaccine development. In this study, we confirmed the possible adjuvant activity of LL-37 in mucosal vaccine development against Middle East respiratory syndrome-coronavirus (MERS-CoV) by means of intranasal immunization in C57BL/6 and human dipeptidyl peptidase 4 (hDPP4)-transgenic (hDPP4-Tg) mice. Intranasal immunization using the receptor-binding domain (RBD) of MERS-CoV spike protein (S-RBD) recombined with LL-37 (S-RBD-LL-37) induced an efficient mucosal IgA and systemic IgG response with virus-neutralizing activity, compared with S-RBD. Ag-specific CTL stimulation was also efficiently induced in the lungs of mice that had been intranasally immunized with S-RBD-LL-37, compared with S-RBD. Importantly, intranasal immunization of hDPP4-Tg mice with S-RBD-LL-37 led to reduced immune cell infiltration into the lungs after infection with MERS-CoV. Finally, intranasal immunization of hDPP4-Tg mice with S-RBD-LL-37 led to enhanced protective efficacy, with increased survival and reduced body weight loss after challenge infection with MERS-CoV. Collectively, these results suggest that S-RBD-LL-37 is an effective intranasal vaccine candidate molecule against MERS-CoV infection.

High-throughput Gene Expression Analysis to Investigate Host-pathogen Interaction in Avian Coccidiosis

  • Lillehoj Hyun, S.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.1
    • /
    • pp.77-83
    • /
    • 2007
  • Poultry products including meat and eggs constitute a major protein source in the American diet and disease-causing pathogens represent major challenges to the poultry industry. More than 95% of pathogens enter the host through the mucosal surfaces of the respiratory, digestive and reproductive tracts and over the past few decades, the two main mechanisms used to control diseases have been the use of vaccines and antibiotics. However, in the poultry industry, there are mounting concerns over the ability of current vaccines to adequately protect against emerging hyper-virulent strains of pathogens and a lack of suitable, cost effective adjuvants. Thorough investigation of the immunogenetic responses involved in host-pathogen interactions will lead to the development of new and effective strategies for improving poultry health, food safety and the economic viability of the US poultry industry. In this paper, I describe the development of immunogenomic and proteomic tools to fundamentally determine and characterize the immunological mechanisms of the avian host to economically significant mucosal pathogens such as Eimeria. Recent completion of poultry genome sequencing and the development of several tissue-specific cDNA libraries in chickens are facilitating the rapid application of functional immunogenomics in the poultry disease research. Furthermore, research involving functional genomics, immunology and bioinformatics is providing novel insights into the processes of disease and immunity to microbial pathogens at mucosal surfaces. In this presentation, a new strategy of global gene expression using avian macrophage (AMM) to characterize the multiple pathways related to the variable immune responses of the host to Eimeria is described. This functional immunogenomics approach will increase current understanding of how mucosal immunity to infectious agents operates, and how it may be enhanced to enable the rational development of new and effective strategies against coccidiosis and other mucosal pathogens.

Ginsan Enhances Humoral Antibody Response to Orally Delivered Antigen

  • Na, Hee Sam;Lim, You Jin;Yun, Yeon-Sook;Kweon, Mi Na;Lee, Hyun-Chul
    • IMMUNE NETWORK
    • /
    • v.10 no.1
    • /
    • pp.5-14
    • /
    • 2010
  • Background: There have been several reports describing the capability of ginseng extracts as an adjuvant. In this study, we tested if ginsan, a polysaccharide extracted from Panax ginseng, was effective in enhancing antibody response to orally delivered Salmonella antigen. Methods: Ginsan was treated before oral salmonella antigen administration. Salmonella specific antibody was determined by ELISA. mRNA expression was determined by RT-PCR. Cell migration was determined by confocal microscopy and flow cytometry. COX expression was detected by western blot. Results: Ginsan treatment before oral Salmonella antigen delivery significantly increased both secretory and serum antibody production. Ginsan increased the expression of COX in the Peyer's patches. Various genes were screened and we found that CCL3 mRNA expression was increased in the Peyer's patch. Ginsan increased dendritic cells in the Peyer's patch and newly migrated dendritic cells were mostly found in the subepithelial dome region. When COX inhibitors were treated, the expression of CCL3 was reduced. COX inhibitor also antagonized both the migration of dendritic cells and the humoral immune response against oral Salmonella antigen. Conclusion: Ginsan effectively enhances the humoral immune response to orally delivered antigen, mediated by CCL3 via COX. Ginsan may serve as a potent vaccine suppliment for oral immunization.