• Title/Summary/Keyword: Moving Sliding Surface

Search Result 54, Processing Time 0.026 seconds

WHEEL SLIP CONTROL WITH MOVING SLIDING SURFACE FOR TRACTION CONTROL SYSTEM

  • Chun, K.;Sunwoo, M.
    • International Journal of Automotive Technology
    • /
    • v.5 no.2
    • /
    • pp.123-133
    • /
    • 2004
  • This paper describes a robust and fast wheel slip tracking control using a moving sliding surface technique. A traction control system (TCS) is the active safety system used to prevent the wheel slipping and thus improve acceleration performance, stability and steerability on slippery roads through the engine torque and/or brake torque control. This paper presents a wheel slip control for TCS through the engine torque control. The proposed controller can track a reference input wheel slip in a predetermined time. The design strategy investigated is based on a moving sliding surface that only contains the error between the reference input wheel slip and the actual wheel slip. The used moving sliding mode was originally designed to ensure that the states remain on a sliding surface, thereby achieving robustness and eliminating chattering. The improved robustness in driving is important due to changes, such as from dry road to wet road or vice versa which always happen in working conditions. Simulations are performed to demonstrate the effectiveness of the proposed moving sliding mode controller.

Fuzzy moving sliding mode control for robotic manipulators (로봇 매니퓰레이터를 위한 퍼지 이동 슬라이딩 모드 제어)

  • 한태열;전경한;최봉열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.348-348
    • /
    • 2000
  • In this paper, we present a fuzzy moving sliding mode control for two-degrree-of-freedom robotic manipulator. 17he sliding surface parameters are designed by fuzzy inference. The proposed sliding mode control makes the error always remain on the surface from beginning and therefore, the system is insensitive to system uncertaintics and external disturbances. Simulation results show the effectiveness of proposed scheme.

  • PDF

Time-varying sliding surface design using eigenvalue locus for high-order variable structure control systems (고차 가변구조 제어 시스템에서의 고유치 궤적을 이용한 시변 스위칭 평면 설계)

  • 이영성;김가규;최봉열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.253-256
    • /
    • 1996
  • In this paper, A new time-varying sliding surface design using eigenvalue locus is proposed to achieve fast and robust in a class of high-order uncertain dynamic system. A moving sliding surface(MSS) was proposed earlier for the second-order variable structure control systems(VSCS). This methodology led to fast and robust control responses of the second-order VSCS. However, the moving algorithm of the MSS was too complicated to be employed the high-order VSCS. To resolve this problem, we propose a new moving algorithm that switching surface moves such that the eigenvalues of equivalent system in the sliding mode have a predetermined locus. Using the proposed surface fast and robust behaviors are accomplished. The problem of chattering can be eliminated by using a boundary layer of switching surface. The efficiency of proposed algorithm is illustrated by an application to four-order workbench.

  • PDF

Stepwise Fuzzy Moving Sliding Surface for Second-Order Nonlinear Systems (2차 비선형 시스템에 대한 계단형 퍼지 이동 슬라이딩 평면)

  • Yoo, Byung-Kook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.524-530
    • /
    • 2002
  • This note suggests a stepwise fuzzy moving sliding surface using Sugeno-type fuzzy system and presents a sliding mode control scheme using it. The fuzzy system has the angle of state error vector and the distance from the origin in the phase plane as inputs and a first-order linear differential equation as output. The surface initially passes arbitrary initial states and subsequently moves towards a predetermined surface via rotating or shifting. This method reduces the reaching and tracking time and improves robustness. Conceptually the slope of the Proposed fuzzy moving sliding surface increases stepwise in the stable region of the phase plane. The surface, however, rotates continuously because the surface is a fuzzy system. The asymptotic stability of the fuzzy sliding surface is proved. The validity of the proposed control scheme is shown in computer simulation for a second-order nonlinear system.

Design of High-Order Moving Sliding Surface via Fuzzy Algorithm (퍼지 알고리듬을 이용한 고차 이동슬라이딩서피스의 설계)

  • Park, Dong-Won;Choi, Seung-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.32-44
    • /
    • 1997
  • A moving sliding surface(MSS) was proposed earlier for the second-order variable structure control system(VSCS). The MSS was disigned to pass arbitrary initial conditions, and subsequently moved towards a predetermined sliding surface by rotating and/or shifting. This methodology led to fast and robust control responses of the second-order VSCS, especially in a reaching phase. However, the moving algorithm of the MSS was too complicated to be employed to the high-order VSCS. To resolve this problem, a new moving algorithm based on the fuzzy theory is proposed in this paper. For the generalization of the MSS, the conditions for rotating or shifting are firstly investigated. Then the fuzzy algorithm is formulated by adopting the values of the surface function and the total discontinuity gain as input variables, and the variation of the surface function as output variable. The position control problem of an electrohydraulic servomechanism is adopted in order to demonstrate the efficiency and the feasibility of the proposed MSS associated with fuzzy algorithm.

Fuzzy Moving Sliding Model Control for Robotic Manipulators (로봇 매니퓰레이터를 위한 퍼지 이동슬라이딩 모드 제어)

  • Chun, Kyung-Han;Park, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.597-604
    • /
    • 2001
  • Recently, the study of the moving sliding mode in the variable structure control is in progress ac-tively. The conventional time-invariant sliding model control can\`t guarantee the sliding mode in the reaching phase, which is robust against the uncertainty. But with the time-varying method, the controller makes the states track the desired trajectories and keeps the sliding mode. Nevertheless, the piecewise continuous method of the past still has the reaching mode. Thus we propose the continuously moving sliding surface by the fuzzy algorithm. The proposed algorithm is made of the fuzzy rule considering both the error and the error velocity, and may apply to the entire phase plane without sacrificing sliding mode. Especially the proposed scheme can rotate tot he slope-decreasing direction, needless to say rotating to the slope-increasing direction. For showing that the proposed controller guarantees the sliding model and ensures the robustness, we apply the proposed method to the two-link robot manipulator simulation.

  • PDF

Nonlinear Control using Stepwise Fuzzy Moving Sliding Surface (계단형 퍼지 이동 슬라이딩 평면을 이용한 비선형 제어)

  • 유병국;양근호
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.153-156
    • /
    • 2003
  • This short paper suggests a control strategy using a stepwise fuzzy moving sliding surface. The moving surface is a Sugeno-type fuzzy system that has the angle of state error vector and the distance from the origin in the phase plane as inputs and a first-order linear differential equation as an output. The surface initially passes arbitrary initial states and subsequently moves towards a predetermined surface via rotating or shifting. the proposed method reduces the reaching and tracking time and improves robustness. The asymptotic stability of the fuzzy sliding surface is proved. The validity of the proposed control scheme is shown in computer simulation for a second-order nonlinear system.

  • PDF

Vibration Control of Quarter Vehicle ER Suspension System Using Fuzzy Moving Sliding Mode Controller (퍼지이동 슬라이딩모드 제어기를 이용한 1/4차량의 ER현가장치 진동제어)

  • Sung, Kum-Gil;Cho, Jae-Wan;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.644-649
    • /
    • 2006
  • This paper presents a robust and superior control performance of a quarter-vehicle electrorheological (ER) suspension system. In order to achieve this goal, a moving sliding mode control algorithm is adopted, and its moving strategy is tuned by fuzzy logic. As a first step, ER damper is designed and manufactured for a passenger vehicle suspension system, and its field-dependent damping force is experimentally evaluated. After formulating the governing equation of motion for the quarter-vehicle ER suspension system, a stable sliding surface and moving algorithm based on fuzzy logic are formulated. The fuzzy moving sliding mode controller is then constructed and experimentally implemented. Control performances of the ER suspension system are evaluated in both time and frequency domains.

  • PDF

Vibration Control of Quarter Vehicle ER Suspension System Using Fuzzy Moving Sliding Mode Controller (퍼지이동 슬라이딩모드 제어기를 이용한 1/4차량의 ER현가장치 진동제어)

  • Sung, Kum-Gil;Cho, Jae-Wan;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.822-829
    • /
    • 2006
  • This paper presents a robust and superior control performance of a quarter-vehicle electrorheological (ER) suspension system. In order to achieve this goal, a moving sliding mode control algorithm is adopted, and its moving strategy is tuned by fuzzy logic. As a first step, ER damper is designed and manufactured for a passenger vehicle suspension system, and its field-dependent damping force is experimentally evaluated. After formulating the governing equation of motion for the quarter-vehicle ER suspension system, a stable sliding surface and moving algorithm based on fuzzy logic are formulated. The fuzzy moving sliding mode controller is then constructed and experimentally implemented. Control performances of the ER suspension system are evaluated in both time and frequency domains.

Application of robust fuzzy sliding-mode controller with fuzzy moving sliding surfaces for earthquake-excited structures

  • Alli, Hasan;Yakut, Oguz
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.517-544
    • /
    • 2007
  • This study shows a fuzzy tuning scheme to fuzzy sliding mode controller (FSMC) for seismic isolation of earthquake-excited structures. The sliding surface can rotate in the phase plane in such a direction that the seismic isolation can be improved. Since ideal sliding mode control requires very fast switch on the input, which can not be provided by real actuators, some modifications to the conventional sliding-mode controller have been proposed based on fuzzy logic. A superior control performance has been obtained with FSMC to deal with problems of uncertainty, imprecision and time delay. Furthermore, using the fuzzy moving sliding surface, the excellent system response is obtained if comparing with the conventional sliding mode controller (SMC), as well as reducing chattering effect. For simulation validation of the proposed seismic response control, 16-floor tall building has been considered. Simulations for six different seismic events, Elcentro (1940), Hyogoken (1995), Northridge (1994), Takochi-oki (1968), the east-west acceleration component of D$\ddot{u}$zce and Bolu records of 1999 D$\ddot{u}$zce-Bolu earthquake in Turkey, have been performed for assessing the effectiveness of the proposed control approach. Then, the simulations have been presented with figures and tables. As a result, the performance of the proposed controller has been quite remarkable, compared with that of conventional SMC.