• 제목/요약/키워드: Moving Sliding Surface

검색결과 54건 처리시간 0.033초

WHEEL SLIP CONTROL WITH MOVING SLIDING SURFACE FOR TRACTION CONTROL SYSTEM

  • Chun, K.;Sunwoo, M.
    • International Journal of Automotive Technology
    • /
    • 제5권2호
    • /
    • pp.123-133
    • /
    • 2004
  • This paper describes a robust and fast wheel slip tracking control using a moving sliding surface technique. A traction control system (TCS) is the active safety system used to prevent the wheel slipping and thus improve acceleration performance, stability and steerability on slippery roads through the engine torque and/or brake torque control. This paper presents a wheel slip control for TCS through the engine torque control. The proposed controller can track a reference input wheel slip in a predetermined time. The design strategy investigated is based on a moving sliding surface that only contains the error between the reference input wheel slip and the actual wheel slip. The used moving sliding mode was originally designed to ensure that the states remain on a sliding surface, thereby achieving robustness and eliminating chattering. The improved robustness in driving is important due to changes, such as from dry road to wet road or vice versa which always happen in working conditions. Simulations are performed to demonstrate the effectiveness of the proposed moving sliding mode controller.

로봇 매니퓰레이터를 위한 퍼지 이동 슬라이딩 모드 제어 (Fuzzy moving sliding mode control for robotic manipulators)

  • 한태열;전경한;최봉열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.348-348
    • /
    • 2000
  • In this paper, we present a fuzzy moving sliding mode control for two-degrree-of-freedom robotic manipulator. 17he sliding surface parameters are designed by fuzzy inference. The proposed sliding mode control makes the error always remain on the surface from beginning and therefore, the system is insensitive to system uncertaintics and external disturbances. Simulation results show the effectiveness of proposed scheme.

  • PDF

고차 가변구조 제어 시스템에서의 고유치 궤적을 이용한 시변 스위칭 평면 설계 (Time-varying sliding surface design using eigenvalue locus for high-order variable structure control systems)

  • 이영성;김가규;최봉열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.253-256
    • /
    • 1996
  • In this paper, A new time-varying sliding surface design using eigenvalue locus is proposed to achieve fast and robust in a class of high-order uncertain dynamic system. A moving sliding surface(MSS) was proposed earlier for the second-order variable structure control systems(VSCS). This methodology led to fast and robust control responses of the second-order VSCS. However, the moving algorithm of the MSS was too complicated to be employed the high-order VSCS. To resolve this problem, we propose a new moving algorithm that switching surface moves such that the eigenvalues of equivalent system in the sliding mode have a predetermined locus. Using the proposed surface fast and robust behaviors are accomplished. The problem of chattering can be eliminated by using a boundary layer of switching surface. The efficiency of proposed algorithm is illustrated by an application to four-order workbench.

  • PDF

2차 비선형 시스템에 대한 계단형 퍼지 이동 슬라이딩 평면 (Stepwise Fuzzy Moving Sliding Surface for Second-Order Nonlinear Systems)

  • 유병국
    • 한국지능시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.524-530
    • /
    • 2002
  • 본 연구에서는 Sugeno-type 퍼지시스템을 이용하여 계단형 퍼지 이동 슬라이딩 평면을 구성하고 이를 이용한 슬라이딩 모드제어방식을 제안한다 이 퍼지시스템은 위상평면 상에서 상태오차벡터가 이루는 각도와 원점과의 거리를 입력으로 가지며 출력으로 1차 선형방정식을 갖는다. 이 퍼지 슬라이딩 평면을 이용하여 초기 상태를 이 평면상에 위치시키고 이 슬라이딩 평면을 회전시키거나 이동시킴으로써 도달시간을 줄이고 추적시간을 줄인다. 제안된 이동 슬라이딩 평면은 개념적으로 계단형의 이산적인 형태를 가지지만 이 평면이 퍼지시스템으로 구성되기 때문에 연속으로 이동하는 특징을 나타낸다. 제안된 퍼지 슬라이딩 평면에 대한 슬라이딩 모드의 동특성이 안정함을 증명하며 이를 2차 예제시스템을 이용하여 그 타당성을 보인다.

퍼지 알고리듬을 이용한 고차 이동슬라이딩서피스의 설계 (Design of High-Order Moving Sliding Surface via Fuzzy Algorithm)

  • 박동원;최승복
    • 대한기계학회논문집A
    • /
    • 제21권1호
    • /
    • pp.32-44
    • /
    • 1997
  • A moving sliding surface(MSS) was proposed earlier for the second-order variable structure control system(VSCS). The MSS was disigned to pass arbitrary initial conditions, and subsequently moved towards a predetermined sliding surface by rotating and/or shifting. This methodology led to fast and robust control responses of the second-order VSCS, especially in a reaching phase. However, the moving algorithm of the MSS was too complicated to be employed to the high-order VSCS. To resolve this problem, a new moving algorithm based on the fuzzy theory is proposed in this paper. For the generalization of the MSS, the conditions for rotating or shifting are firstly investigated. Then the fuzzy algorithm is formulated by adopting the values of the surface function and the total discontinuity gain as input variables, and the variation of the surface function as output variable. The position control problem of an electrohydraulic servomechanism is adopted in order to demonstrate the efficiency and the feasibility of the proposed MSS associated with fuzzy algorithm.

로봇 매니퓰레이터를 위한 퍼지 이동슬라이딩 모드 제어 (Fuzzy Moving Sliding Model Control for Robotic Manipulators)

  • 전경한;최봉일
    • 제어로봇시스템학회논문지
    • /
    • 제7권7호
    • /
    • pp.597-604
    • /
    • 2001
  • Recently, the study of the moving sliding mode in the variable structure control is in progress ac-tively. The conventional time-invariant sliding model control can\`t guarantee the sliding mode in the reaching phase, which is robust against the uncertainty. But with the time-varying method, the controller makes the states track the desired trajectories and keeps the sliding mode. Nevertheless, the piecewise continuous method of the past still has the reaching mode. Thus we propose the continuously moving sliding surface by the fuzzy algorithm. The proposed algorithm is made of the fuzzy rule considering both the error and the error velocity, and may apply to the entire phase plane without sacrificing sliding mode. Especially the proposed scheme can rotate tot he slope-decreasing direction, needless to say rotating to the slope-increasing direction. For showing that the proposed controller guarantees the sliding model and ensures the robustness, we apply the proposed method to the two-link robot manipulator simulation.

  • PDF

계단형 퍼지 이동 슬라이딩 평면을 이용한 비선형 제어 (Nonlinear Control using Stepwise Fuzzy Moving Sliding Surface)

  • 유병국;양근호
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2003년도 하계학술대회 논문집
    • /
    • pp.153-156
    • /
    • 2003
  • This short paper suggests a control strategy using a stepwise fuzzy moving sliding surface. The moving surface is a Sugeno-type fuzzy system that has the angle of state error vector and the distance from the origin in the phase plane as inputs and a first-order linear differential equation as an output. The surface initially passes arbitrary initial states and subsequently moves towards a predetermined surface via rotating or shifting. the proposed method reduces the reaching and tracking time and improves robustness. The asymptotic stability of the fuzzy sliding surface is proved. The validity of the proposed control scheme is shown in computer simulation for a second-order nonlinear system.

  • PDF

퍼지이동 슬라이딩모드 제어기를 이용한 1/4차량의 ER현가장치 진동제어 (Vibration Control of Quarter Vehicle ER Suspension System Using Fuzzy Moving Sliding Mode Controller)

  • 성금길;조재완;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.644-649
    • /
    • 2006
  • This paper presents a robust and superior control performance of a quarter-vehicle electrorheological (ER) suspension system. In order to achieve this goal, a moving sliding mode control algorithm is adopted, and its moving strategy is tuned by fuzzy logic. As a first step, ER damper is designed and manufactured for a passenger vehicle suspension system, and its field-dependent damping force is experimentally evaluated. After formulating the governing equation of motion for the quarter-vehicle ER suspension system, a stable sliding surface and moving algorithm based on fuzzy logic are formulated. The fuzzy moving sliding mode controller is then constructed and experimentally implemented. Control performances of the ER suspension system are evaluated in both time and frequency domains.

  • PDF

퍼지이동 슬라이딩모드 제어기를 이용한 1/4차량의 ER현가장치 진동제어 (Vibration Control of Quarter Vehicle ER Suspension System Using Fuzzy Moving Sliding Mode Controller)

  • 성금길;조재완;최승복
    • 한국소음진동공학회논문집
    • /
    • 제16권8호
    • /
    • pp.822-829
    • /
    • 2006
  • This paper presents a robust and superior control performance of a quarter-vehicle electrorheological (ER) suspension system. In order to achieve this goal, a moving sliding mode control algorithm is adopted, and its moving strategy is tuned by fuzzy logic. As a first step, ER damper is designed and manufactured for a passenger vehicle suspension system, and its field-dependent damping force is experimentally evaluated. After formulating the governing equation of motion for the quarter-vehicle ER suspension system, a stable sliding surface and moving algorithm based on fuzzy logic are formulated. The fuzzy moving sliding mode controller is then constructed and experimentally implemented. Control performances of the ER suspension system are evaluated in both time and frequency domains.

Application of robust fuzzy sliding-mode controller with fuzzy moving sliding surfaces for earthquake-excited structures

  • Alli, Hasan;Yakut, Oguz
    • Structural Engineering and Mechanics
    • /
    • 제26권5호
    • /
    • pp.517-544
    • /
    • 2007
  • This study shows a fuzzy tuning scheme to fuzzy sliding mode controller (FSMC) for seismic isolation of earthquake-excited structures. The sliding surface can rotate in the phase plane in such a direction that the seismic isolation can be improved. Since ideal sliding mode control requires very fast switch on the input, which can not be provided by real actuators, some modifications to the conventional sliding-mode controller have been proposed based on fuzzy logic. A superior control performance has been obtained with FSMC to deal with problems of uncertainty, imprecision and time delay. Furthermore, using the fuzzy moving sliding surface, the excellent system response is obtained if comparing with the conventional sliding mode controller (SMC), as well as reducing chattering effect. For simulation validation of the proposed seismic response control, 16-floor tall building has been considered. Simulations for six different seismic events, Elcentro (1940), Hyogoken (1995), Northridge (1994), Takochi-oki (1968), the east-west acceleration component of D$\ddot{u}$zce and Bolu records of 1999 D$\ddot{u}$zce-Bolu earthquake in Turkey, have been performed for assessing the effectiveness of the proposed control approach. Then, the simulations have been presented with figures and tables. As a result, the performance of the proposed controller has been quite remarkable, compared with that of conventional SMC.