• Title/Summary/Keyword: Moving Load analysis

Search Result 287, Processing Time 0.024 seconds

Reduction of Vibration Responses of a Bridge due to Vehicles (차량으로 인한 다리의 진동응답을 줄이는 방법)

  • Lee, Gun-Myung;Ju, Young-Ho;Park, Mun-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • The responses of a bridge due to a moving vehicle are obtained analytically by modeling a vehicle as a constant point force. From the results it is found that the responses after a vehicle leaves the bridge become very small for some speeds of a vehicle. When a vehicle is modeled as a two dof system for a more accurate analysis, the same phenomenon is observed while the roughness of the surface of the bridge is small. Determining the fundamental frequency of a bridge so that one of the above speeds coincides with a frequent speed of vehicles, the responses of a bridge can be minimized.

BWIM Using Measured Acceleration and Strain Data

  • Paik, In-Yeol;Lee, Seon-Dng;Shin, Soo-Bong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.3
    • /
    • pp.233-245
    • /
    • 2011
  • A new BWIM(bridge weigh-in-motion) algorithm using both measured strain and acceleration data is proposed. To consider the effects of bridge vibration on the estimation of moving loads, the dynamic governing equation is applied with the known stiffness and mass properties but damping is ignored. Dynamic displacements are computed indirectly from the measured strains using the beam theory and accelerations are measured directly by accelerometers. To convert a unit moving load to its equivalent nodal force, a transformation matrix is determined. The incompleteness in the measured responses is considered in developing the algorithm. To examine the proposed BWIM algorithm, simulation studies, laboratory experiments and field tests were carried. In the simulation study, effects of measurement noise and estimation error in the vehicle speed on the results were investigated.

Morphological Anaylsis of Wear Debris for Lubricated Moving Machine Surfaces by Image Processing (화상처리에 의한 기계윤활 운동면의 마멸분 형태해석)

  • 박흥식;전태옥;서영백;김형자
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.72-78
    • /
    • 1996
  • This paper was undertaken to analyze the morphology of wear debris generated from lubricated moving machine surfaces by image processing. The lubricati, ng wear test was performed under different experimental conditions using the wear test device made in our laboratory and wear test specimen of the pin on disk type wear rubbed in paraffme series base oil, by varying applied load, sliding distance. The four parameters (50% volumetric diameter, aspect, roundness and reflectivity) to describe the morphology have been developed and outlined in the paper. A system using such techniques promises to obviate the need for subjective, human interpretation of particle morphology in machine condition monitoring, thus to overcome many of the difficulties with current methods and to facilitate wider use of wear particle analysis in machine condition monitoring.

Dynamic Behavior of High-Speed Railway Bridges (고속철도 교량의 동적거동)

  • 김성재;안예준;신영석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.103-110
    • /
    • 1999
  • Dynamic responses of steel composite bridges for the Korean high-speed railway are analyzed by a modal analysis. The bridge is modeled as a simply supported beam structure and a vehicle of TGV-K is modeled using a moving load assumption. When the train is moving on a bridge, its deck shows resonance phenomenon at a critical velocity. However, it is observed that the dynamic response is greatly reduced at a special range of the span length. The results show that the reduction effect should be considered ill designing the railway bridges. A parametric study of tile dynamic response is performed for different span lengths, and specific train speeds train should be considered in designing the high speed railway bridge are suggested.

  • PDF

Vertical vibrations of a multi-span beam steel bridge induced by a superfast passenger train

  • Klasztorny, M.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.3
    • /
    • pp.267-281
    • /
    • 2001
  • Transient and quasi-steady-state vertical vibrations of a multi-span beam steel bridge located on a single-track railway line are considered, induced by a superfast passenger train, moving at speed 120-360 km/h. Matrix dynamic equations of motion of a simplified model of the system are formulated partly in the implicit form. A recurrent-iterative algorithm for solving these equations is presented. Excessive vibrations of the system in the resonant zones are reduced effectively with passive dynamic absorbers, tuned to the first mode of a single bridge span. The dynamic analysis has been performed for a series of types of bridges with span lengths of 10 to 30 m, and with parameters closed to multi-span beam railway bridges erected in the second half of the $20^{th}$ century.

평면 연삭 가공시 발생하는 연삭열에 관한 연구 -해석적 모델-

  • Kim, Dong-Kil;Nam, Weon-Woo;Lee, Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.187-194
    • /
    • 2001
  • The objective of this study is to develop a model for the grinding process for predicting the temperature, thermal stress and thermal deformation. The thermal load during grinding is modeled as uniformly distributed, 2D heat source moving across the surface of elastic half space, which is insulated or subjected to convective cooling. That non-dimensional temperature distribution, non-dimensional longitudinal stress distribution and non-dimensional thermal deformation distribution are calculated with non-dimensional heat source half width and non-dimensional heat transfer coefficient. Finite element models are developed to simulate moving heat source, which is modeled as uniformly or triangularly distributed, the FEM simulation is compared with numerical solution.

  • PDF

Determination of Dynamic Parameters of Continuous Beam Using Morlet Wavelet (Morlet웨이블렛을 이용한 연속보의 동적 파라메터 추정)

  • 박종열;박형기;김규학
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.143-150
    • /
    • 2002
  • This paper presents the application of continuous wavelet transform for determination of dynamic parameters of continuous beam subjected to moving load. Morlet wavelet is used as mother wavelet in wavelet transform. Dynamic parameters are estimated from the magnitudes and arguments of the wavelet coefficients obtained by wavelet transforming the response time histories of joints on the beam. This study shows that the estimated parameters such as natural frequencies, dmping ratios and mode shapes are to be well-compared with those of the finite element analysis.

  • PDF

A Study on the Vibration Isolation Design of Road Passing through Building (건물을 통과하는 도로의 방진설계 연구)

  • 맹주원;권태철;이성춘;홍갑표
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.760-765
    • /
    • 2003
  • This study is performed in order to determine a method to solve vibration-borne problems by isolating the vibration that is generated by vehicles in case a road passes through a building and also to verify its applicability and effect both theoretically and experimentally.

  • PDF

Congestion effect on maximum dynamic stresses of bridges

  • Samanipour, Kianoosh;Vafai, Hassan
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.111-135
    • /
    • 2015
  • Bridge behavior under passing traffic loads has been studied for the past 50 years. This paper presents how to model congestion on bridges and how the maximum dynamic stress of bridges change during the passing of moving vehicles. Most current research is based on mid-span dynamic effects due to traffic load and most bridge codes define a factor called the dynamic load allowance (DLA), which is applied to the maximum static moment under static loading. This paper presents an algorithm to solve the governing equation of the bridge as well as the equations of motions of two real European trucks with different speeds, simultaneously. It will be shown, considering congestion in eight case studies, the maximum dynamic stress and how far from the mid-span it occurs during the passing of one or two trucks with different speeds. The congestion effect on the maximum dynamic stress of bridges can make a significant difference in the magnitude. By finite difference method, it will be shown that where vehicle speeds are considerably higher, for example in the case of railway bridges which have more than one railway line or in the case of multiple lane highway bridges where congestion is probable, current designing codes may predict dynamic stresses lower than actual stresses; therefore, the consequences of a full length analysis must be used to design safe bridges.

Parametric Analysis in Dynamic Characteristics of Railway Track due to Travelling Vehicle (주행차량에 의한 궤도 동적?성의 매개변수 분석)

  • Kim Sang-Hyo;Lee Yong-Seon;Cho Kwang-Il
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.337-342
    • /
    • 2003
  • The dynamic load effects are conveyed to the railway bridges through tracks which are generated by moving trains The dynamic load effects may vary due to the dynamic characteristics of the applied vehicle loads and the railway bridges containing the track system. However, the track effects have been neglected or simplified by spring elements in the most studies since it is quite complex to consider the track systems in the dynamic analysis models of railway bridges. In this study, track system on railway bridges is modeled using a three-dimensional discrete-support model that can simulate the load carrying behavior of tracks. In addition, this program is developed with the precise 20-car model and a continuous PSC(prestressed concrete) box girder bridge, which is the main bridge type of Korea Train express(KTX). Three-dimensional elements are used for both. The dynamic response of railway bridges is found to be affected depending on whether the track model is considered or not. The influencing rate depends on the traveling speed and different wheel-axle distance. The dynamic bridge response is decreased remarkably by the track systems around the resonant frequency. Therefore, the resonance effect can be reduced by modifying the track properties in the railway bridge.

  • PDF