• Title/Summary/Keyword: Moving Joint

Search Result 241, Processing Time 0.022 seconds

Development of Visual Servo Control System for the Tracking and Grabbing of Moving Object (이동 물체 포착을 위한 비젼 서보 제어 시스템 개발)

  • Choi, G.J.;Cho, W.S.;Ahn, D.S.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.96-101
    • /
    • 2002
  • In this paper, we address the problem of controlling an end-effector to track and grab a moving target using the visual servoing technique. A visual servo mechanism based on the image-based servoing principle, is proposed by using visual feedback to control an end-effector without calibrated robot and camera models. Firstly, we consider the control problem as a nonlinear least squares optimization and update the joint angles through the Taylor Series Expansion. And to track a moving target in real time, the Jacobian estimation scheme(Dynamic Broyden's Method) is used to estimate the combined robot and image Jacobian. Using this algorithm, we can drive the objective function value to a neighborhood of zero. To show the effectiveness of the proposed algorithm, simulation results for a six degree of freedom robot are presented.

  • PDF

A STUDY ON SIMULATION OF THE MANDIBULAR MOVEMENT OF THE PATIENTS WITH TEMPOROMANDIBULAR JOINT DISORDER (측두하악 장애환자의 하악 운동 Simulation에 관한 연구)

  • Park, Sang-Yoon;Kang, Dong-Wan;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.161-175
    • /
    • 1991
  • To understand the biomechanics of the mandibular movement of the patients with T.M.J. disorder, it is necessary to analyze the mandibular movement by the least moving points of instantaneous center of rotation on computer screen. In this study, two subjects without T.M.J. disorder and with normal occlusion and few patients with T.M.J. disorder were selected for obtaining the processing data. The habitual opening and dosing movements were recorded by image recognition system of video and computer and then the mandibular movement and the least moving point were analyzed using computer program for image anaysis of specialized points. The results obtained were as follows: 1. The least moving points of control group during opening and dosing were dose to the mandibular foramen, but in the test group there were differences between two positions of the least moving points during opening and closing. 2. The variations of the least moving point were in the range of $0.02\sim0.05cm$ of X-coordinate and $0.07\sim0.10cm$ of Y-coordinate for control group, whereas in the range of $0.05\sim0.30cm$ of X-coordinate and $0.08\sim1.65cm$ of Y-coordinate for test group. 3. The index of variation during opening and dosing movements was shown in $0.8\sim1.0$ for the control group and in $0.56\sim2.6$ for the test group. 4. After the treatment of the test group No. 4 by occlusal splint the least moving point was dose to the mandibular foramen and the index of variation was changed from 25 to 05. 5. The tracing shape of the least moving point in the test group represented the irregularities compared to the control group. 6. The mandibular opening and dosing movements were simulated on the computer screen following the movement of the least moving point of instantaneous center of rotation.

  • PDF

Simulator of Accuracy Prediction for Developing Machine Structures (기계장비의 구조 특성 예측 시뮬레이터)

  • Lee, Chan-Hong;Ha, Tae-Ho;Lee, Jae-Hak;Kim, Yang-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.265-274
    • /
    • 2011
  • This paper presents current state of the prediction simulator of structural characteristics of machinery equipment accuracy. Developed accuracy prediction simulator proceeds and estimates the structural analysis between the designer and simulator through the internet for convenience of designer. 3D CAD model which is input to the accuracy prediction simulator would simplified by the process of removing the small hole, fillet and chamfer. And the structural surface joints would be presented as the spring elements and damping elements for the structural analysis. The structural analysis of machinery equipment joints, containing rotary motion unit, linear motion unit, mounting device and bolted joint, are presented using Finite Element Method and their experiment. Finally, a general method is presented to tune the static stiffness at a rotation joint considering the whole machinery equipment system by interactive use of Finite Element Method and static load experiment.

Post-Failure Walking of Quadruped Robots on a Rough Planar Terrain (비평탄 지형에서 사각 보행 로봇의 고장후 보행)

  • Yang Jung-Min;Park Yong Kuk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.9
    • /
    • pp.547-555
    • /
    • 2005
  • A fault-tolerant gait of multi-legged robots with static walking is a gait which can maintain gait stability and continue its walking against an occurrence of a leg failure. This paper proposes fault-tolerant gait planning of a quadruped robot walking over a rough planar terrain. The considered fault is a locked joint failure, which prevents a joint of a leg from moving and makes it locked in a known position. In this Paper, two-phase discontinuous gaits are presented as a new fault-tolerant gait for quadruped robots suffering from a locked joint failure. By comparing with previously developed one-phase discontinuous gaits, it is shown that the proposed gait has great advantages in gait performance such as the stride length and terrain adaptability. Based on the two-phase discontinuous gait, quasi follow-the-leader(FTL) gaits are constructed which enable a quadruped robot to traverse two-dimensional rough terrain after an occurrence of a locked joint failure. During walking, two front legs undergo the foot adjustment procedure for avoiding stepping on forbidden areas. The Proposed wait planning is verified by using computer graphics simulations.

Effect of Physiotherapeutic Intervention Using TECAR Therapy on Pain Self-Awareness and Hip Joint Function in Hip Impingement Syndrome: A Case Study

  • Oh, Dong-Gun;Kim, Seon-Ki;Yoo, Kyung-Tae
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.3
    • /
    • pp.45-53
    • /
    • 2021
  • PURPOSE: The current case study focuses on identifying the effects of the independent application of TECAR therapy and physiotherapeutic intervention using TECAR therapy on pain self-awareness and hip joint function in patients with hip impingement syndrome caused by nonstructural changes. Subjects: The research subject was a 34-year-old woman struggling with acute pain in her left hip, difficulty in actively moving the hip, and a problem in its overall function. METHODS: The subject's pain awareness and hip joint function were measured using a Visual Analog Scale (VAS) and passive range of motion (PROM), respectively. The experimental intervention was carried out in 24 sessions of 16 minutes each, three times a week, for eight weeks. RESULTS: The VAS score decreased to 0 cm on the post-test from 4.3 cm, 6.5 cm, and 7.2 cm in the pre-test at the rest, standing, and gait positions, respectively. The index of PROM measured hip joint flexion, extension, abduction, adduction, internal rotation, external rotation, and passive straight leg raise. The values increased to 122.5°, 24.5°, 78°, 33°, 65°, 42°, and 96.5° in the post-test compared to 88.5°, 15°, 39°, 21.5°, 23°, 22°, and 46.5° in the pre-test, respectively. CONCLUSION: TECAR therapy and physiotherapeutic intervention using TECAR can help reduce pain and enhance the hip joint function in patients with hip impingement syndrome.

A Study on the Characteristics of Heat Distribution of Welded Joint on the Steel Structure with Thick Plate (厚板 鋼構造物 熔接이음부의 熱分布 特性에 關한 硏究)

  • 방한서;김종명
    • Journal of Welding and Joining
    • /
    • v.13 no.1
    • /
    • pp.138-144
    • /
    • 1995
  • Recently, as the industrial structure tends to become large, the thickness of structural plate becomes thicker. Therefore, the thicker the plate of welded structure is, the larger the shape of welded joint. The effect of large heat input makes large heat affected zone(HAZ). These bring to complict welding residual stress and to weaken material, which may cause extremely harm to the safety of structures. Nevertheless, welding is design is regulated by the KS, JIS or standard in the resister of shipping such as KR, ABS or LR. However, these rules are based on rather experimental than theoretical. In this study, the computer program of heat conduction, considering un-steady state and quasi-steady state, is developed for optimizing(minimizing) a shape of welded joint. The characteristics of heat on the welded joints with various shapes are clarified by the results of the analyses.

  • PDF

A trajectory prediction of human reach (Reach 동작예측 모델의 개발)

  • 최재호;정의승
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.787-796
    • /
    • 1995
  • A man model is a useful design tool for the evaluation of man machine systems and products. An arm reach trajectory prediction for such a model will be specifically useful to present human activities and, consequently, could increase the accuracy and reality of the evaluation. In this study, a three-dimensional reach trajectory prediction model was developed using an inverse kinematics technique. The upper body was modeled as a four link open kinematic chain with seven degrees of freedom. The Resolved Motion Method used for the robot kinematics problem was used to predict the joint movements. The cost function of the perceived discomfort developed using the central composite design was also used as a performance function. This model predicts the posture by moving the joints to minimize the discomfort on the constraint of the end effector velocity directed to a target point. The results of the pairwise t-test showed that all the joint coordinates except the shoulder joint's showed statistically no differences at .alpha. = 0.01. The reach trajectory prediction model developed in this study was found to accurately simulate human arm reach trajectory and the model will help understand the human arm reach movement.

  • PDF

A Study on Automatic Seam Tracking System Using Electro-Magnetic Sensor for Sheet Metal Arc Welding of Butt Joints (박판 맞대기 용접에서 전자기식 센서를 이용한 용접선 자동 추적 시스템에 관한 연구)

  • 유병희;김재웅
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.81-91
    • /
    • 1997
  • In this study, a magnetic sensor to make use of eddy current was developed to detect the weld seam of butt joint in the sheet metal arc welding. This system consist of the sensor device for detecting the weld line, the servo control device for driving the weld torch movement and the control unit. A signal processing was applied to smooth the output signal of the sensor. The weld joint was determined by using a 1st order differential method. To improve tracking accuracy of the system, moving average method which has an effect of proportional and weighted integral control was applied to a series of the weld joint positions obtained above. The weld line for tracking was generated by using data regeneration algorithm. Based on these results, each servo motor was controlled by pulse generator. From experimental results, it was revealed that this system has excellent detecting ability for weld line and seam tracking ability.

  • PDF

Optimization-based Real-time Human Elbow Joint Angle Extraction Method (최적화 기반 인간 팔꿈치 관절각 실시간 추출 방법)

  • Choi, Young-Jin;Yu, Hyeon-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1278-1285
    • /
    • 2008
  • An optimization-based real-time joint angle extraction method of human elbow is proposed by processing the biomedical signal of surface EMG (electromyogram) measured at the center point of biceps brachii. The EMG signal is known as non-stationary (time-varying) signal, but we assume that it is quasi-stationary because a physical or physiological system has limitations in the rate at which it can change its characteristics. Based on the assumption, a pre-processing method to obtain pre-angle values from raw EMG signal is firstly suggested, and then an optimization method to minimize the error between the pre-angle and real joint angle is proposed in this paper. Finally, we suggest the experimental results showing the effectiveness of the proposed algorithm.

An Implementation of Smooth laser image using universal joint (유니버셜 관절을 이용한 유연 레이저 영상 구현)

  • 김태강;이건영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.347-347
    • /
    • 2000
  • Nowadays, the Laser image is used to realize multi-media show for events, an advertising media and 3D simulation, realization of video image and so on. It is a hot issue to realize the laser image like computer graphic image. The image used in laser projector is vector graphic image that is described by linking point to point. A computer makes this continuous vector graphic images so that the image shows as an animation. A control signal converted by a computer makes the laser projector draw image. Two motors and universal joint are used to realize 2D laser image in this study. Developing a controller applied Look-ahead algorithm and software to interface with personal computer, This study is the chief aim of improving difference of moving velocity that is appeared from edge of vector graphic image and disparity of graphic density.

  • PDF