• Title/Summary/Keyword: Moving Filter

검색결과 573건 처리시간 0.025초

Research on detecting moving targets with an improved Kalman filter algorithm

  • Jia quan Zhou;Wei Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권9호
    • /
    • pp.2348-2360
    • /
    • 2023
  • As science and technology evolve, object detection of moving objects has been widely used in the context of machine learning and artificial intelligence. Traditional moving object detection algorithms, however, are characterized by relatively poor real-time performance and low accuracy in detecting moving objects. To tackle this issue, this manuscript proposes a modified Kalman filter algorithm, which aims to expand the equations of the system with the Taylor series first, ignoring the higher order terms of the second order and above, when the nonlinear system is close to the linear form, then it uses standard Kalman filter algorithms to measure the situation of the system. which can not only detect moving objects accurately but also has better real-time performance and can be employed to predict the trajectory of moving objects. Meanwhile, the accuracy and real-time performance of the algorithm were experimentally verified.

칼만필터를 이용한 이동 목표물의 실시간 시각추적의 구현 (The Implementation of the Realtime Visual Tracking of Moving Terget by using Kalman Filter)

  • 임양남;방두열;이성철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.254-258
    • /
    • 1996
  • In this paper, we proposed realtime visual tracking system of moving object for 2D target using extended Kalman Filter Algorithm. A targeting marker are recongnized in each image frame and positions of targer object in each frame from a CCD camera while te targeting marker is attached to the tip of the SCARA robot hand. After the detection of a target coming into any position of the field-of-view, the target is tracked and always made to be located at the center of target window. Then, we can track the moving object which moved in inter-frames. The experimental results show the effectiveness of the Kalman filter algorithm for realtime tracking and estimated state value of filter, predicting the position of moving object to minimize an image processing area, and by reducing the effect by quantization noise of image

  • PDF

Decentralized Moving Average Filtering with Uncertainties

  • Song, Il Young
    • 센서학회지
    • /
    • 제25권6호
    • /
    • pp.418-422
    • /
    • 2016
  • A filtering algorithm based on the decentralized moving average Kalman filter with uncertainties is proposed in this paper. The proposed filtering algorithm presented combines the Kalman filter with the moving average strategy. A decentralized fusion algorithm with the weighted sum structure is applied to the local moving average Kalman filters (LMAKFs) of different window lengths. The proposed algorithm has a parallel structure and allows parallel processing of observations. Hence, it is more reliable than the centralized algorithm when some sensors become faulty. Moreover, the choice of the moving average strategy makes the proposed algorithm robust against linear discrete-time dynamic model uncertainties. The derivation of the error cross-covariances between the LMAKFs is the key idea of studied. The application of the proposed decentralized fusion filter to dynamic systems within a multisensor environment demonstrates its high accuracy and computational efficiency.

디지털 가변저항과 지수가중 이동평균필터를 통한 요골동맥에서의 PPG 파형과 맥박 측정에 관한 연구 (A Study of PPG Wave and Pulse Measurement on Radial Artery Using Digital Potentiometer and Exponentially Weighted Moving Average Filter)

  • 정인복;김경호
    • 전기학회논문지
    • /
    • 제63권7호
    • /
    • pp.962-967
    • /
    • 2014
  • In this paper, through a digital potentiometer and exponentially weighted moving average filter, pulse and PPG waveform measurable device was fabricated in radial artery. If this device is not proper about signal size in analog part, MCU can judge easily by adjusted amplification through digital potentiometer, using exponentially weighted moving average filter is able to filter out more clear value of ADC. I presumed pulse rate as value of measuring time between point of maximum contraction from sensing signal in radial artery of wrist. Therefore, this means can measure stable pulse rate and PPG waveform, finger as well as radial artery, whether signal size of each person is different finger as well as radial artery.

칼만 필터를 이용한 다중 차량 추적 알고리즘 (Multiple Vehicle Tracking Algorithm Using Kalman Filter)

  • 김형태;설성욱
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.955-958
    • /
    • 1998
  • This paper describes the algorithm which extracts moving vehicles from sequential images and tracks those vehicles using Kalman filter. This work is composed of a motion segmentation stage which extracts moving objects from sequential images and gets features of objects, and a motion estimation stage which estimates the position and the motion of moving objects using Kalman filter. In the motion estimation stage, applying to affine motion model we divided the Kalman filter into position filter and velocity filter to employ linear Kalman filter. Multi-target tracking requires a data association component that decides which measurement to use for updating the state of which object. We use pattern recognition method to solve this problem.

  • PDF

위치기반서비스를 위한 옥내 이동객체 데이터베이스 갱신전략: 칼만 필터 방법 (Updating Policy of Indoor Moving Object Databases for Location-Based Services: The Kalman Filter Method)

  • 임재걸;주재훈;박찬식;권기용;김민혜
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제19권1호
    • /
    • pp.1-17
    • /
    • 2010
  • This paper proposes an updating policy of indoor moving object databases (IMODB) for location-based services. our method applies the Ka1man filter on the recently collected measured positions to estimate the moving object's position and velocity at the moment of the most recent measurement, and extrapolate the current position with the estimated position and velocity. If the distance between the extrapolated current position and the measured current position is within the threshold, in other words if they are close then we skip updating the IMODB. When the IMODB needs to know the moving object's position at a certain moment T, it applies the Kalman filter on the series of the measurements received before T and extrapolates the position at T with the estimations obtained by the Kalman filter. In order to verify the efficiency of our updating method, we performed the experiments of applying our method on the series of measured positions obtained by applying the fingerprinting indoor positioning method while we are actually walking through the test bed. In the analysis of the test results, we estimated the communication saving rate of our method and the error increment rate caused by the communication saving.

Moving-Target Tracking Based on Particle Filter with TDOA/FDOA Measurements

  • Cho, Jeong-A;Na, Han-Byeul;Kim, Sun-Woo;Ahn, Chun-Soo
    • ETRI Journal
    • /
    • 제34권2호
    • /
    • pp.260-263
    • /
    • 2012
  • In this letter, we propose a moving-target tracking algorithm based on a particle filter that uses the time difference of arrival (TDOA)/frequency difference of arrival (FDOA) measurements acquired by distributed sensors. It is shown that the performance of the proposed algorithm, based on the particle filter, outperforms the one based on the extended Kalman filter. The use of both the TDOA and FDOA measurements is shown to be effective in the moving-target tracking. It is proven that the particle filter deals with the nonlinear nature of the movingtarget tracking problem successfully.

An indoor fusion positioning algorithm of Bluetooth and PDR based on particle filter with dynamic adjustment of weights calculation strategy

  • Qian, Lingwu;Yuan, Bingjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권10호
    • /
    • pp.3534-3553
    • /
    • 2021
  • The low cost of Bluetooth technology has led to its wide usage in indoor positioning. However, some inherent shortcomings of Bluetooth technology have limited its further development in indoor positioning, such as the unstable positioning state caused by the fluctuation of Received Signal Strength Indicator (RSSI) and the low transmission frequency accompanied by a poor real-time performance in positioning and tracking moving targets. To address these problems, an indoor fusion positioning algorithm of Bluetooth technology and pedestrian dead reckoning (PDR) based on a particle filter with dynamic adjustment of weights calculation strategy (BPDW) will be proposed. First, an orderly statistical filter (OSF) sorts the RSSI values of a period and then eliminates outliers to obtain relatively stable RSSI values. Next, the Group-based Trilateration algorithm (GTP) enhances positioning accuracy. Finally, the particle filter algorithm with dynamic adjustment of weight calculation strategy fuses the results of Bluetooth positing and PDR to improve the performance of positioning moving targets. To evaluate the performance of BPDW, we compared BPDW with other representative indoor positioning algorithms, including fingerprint positioning, trilateral positioning (TP), multilateral positioning (MP), Kalman filter, and strong tracking filter. The results showed that BPDW has the best positioning performance on static and moving targets in simulation and actual scenes.

확장칼만필터를 이용한 실시간 표적추적 (Real-time Target Tracking System by Extended Kalman Filter)

  • 임양남;이성철
    • 한국정밀공학회지
    • /
    • 제15권7호
    • /
    • pp.175-181
    • /
    • 1998
  • This paper describes realtime visual tracking system of moving object for three dimensional target using EKF(Extended Kalman Filter). We present a new realtime visual tracking using EKF algorithm and image prediction algorithm. We demonstrate the performance of these tracking algorithm through real experiment. The experimental results show the effectiveness of the EKF algorithm and image prediction algorithm for realtime tracking and estimated state value of filter, predicting the position of moving object to minimize an image processing area, and by reducing the effect by quantization noise of image.

  • PDF

파티클 필터를 이용한 다중 객체의 움직임 환경에서 특정 객체의 움직임 추적 (Specified Object Tracking in an Environment of Multiple Moving Objects using Particle Filter)

  • 김형복;고광은;강진식;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.106-111
    • /
    • 2011
  • 영상 기반의 움직이는 객체의 검출 및 추적은 실시간 감시 시스템이나 영상회의 시스템 등에서 널리 사용되어지고 있다. 또한 인간-컴퓨터 상호 작용(Human-Computer Interface)이나 인간-로봇 상호 작용(Human-Robot Interface)으로 확장되어 사용할 수 있기 때문에 움직이는 객체의 추적 기술은 중요한 핵심 기술 중에 하나이다. 특히 다중 객체의 움직임 환경에서 특정 객체의 움직임만을 추적할 수 있다면 다양한 응용이 가능할 것이다. 본 논문에서는 파티클 필터를 이용한 특정 객체의 움직임 추적에 관하여 연구 하였다. 실험 결과들로부터 파티클 필터를 이용한 단일 객체의 움직임 추적과 다중 객체의 움직임 환경에서 특정 객체의 움직임 추적에서 좋은 결과를 얻을 수 있었다.