• Title/Summary/Keyword: Moving Boundary

Search Result 573, Processing Time 0.03 seconds

Study on Simulation Method for Combustion Flow Field with the Moving Boundary of Solid Propellants (이동 경계면을 가진 고체 추진제 연소 유동장의 해석 기법 연구)

  • Sung, Hyung-Gun;Park, Sol;Hong, Gi-Cheol;Roh, Tae-Seong;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.229-232
    • /
    • 2007
  • A numerical method for the moving boundary required in analysis of the combustion phenomenon of the solid propellant has been studied. The ghost cell extrapolation has been used in the Eulerian coordinate system. The Lagrangian method has been used in Non-Eulerian coordinate system. Results of the numerical analysis were verified by comparing to theoretical results of 1-D free-moving piston in the pipe.

  • PDF

Radial basis collocation method for dynamic analysis of axially moving beams

  • Wang, Lihua;Chen, Jiun-Shyan;Hu, Hsin-Yun
    • Interaction and multiscale mechanics
    • /
    • v.2 no.4
    • /
    • pp.333-352
    • /
    • 2009
  • We introduce a radial basis collocation method to solve axially moving beam problems which involve $2^{nd}$ order differentiation in time and $4^{th}$ order differentiation in space. The discrete equation is constructed based on the strong form of the governing equation. The employment of multiquadrics radial basis function allows approximation of higher order derivatives in the strong form. Unlike the other approximation functions used in the meshfree methods, such as the moving least-squares approximation, $4^{th}$ order derivative of multiquadrics radial basis function is straightforward. We also show that the standard weighted boundary collocation approach for imposition of boundary conditions in static problems yields significant errors in the transient problems. This inaccuracy in dynamic problems can be corrected by a statically condensed semi-discrete equation resulting from an exact imposition of boundary conditions. The effectiveness of this approach is examined in the numerical examples.

A Moving Least Squares weighting function for the Element-free Galerkin Method which almost fulfills essential boundary conditions

  • Most, Thomas;Bucher, Christian
    • Structural Engineering and Mechanics
    • /
    • v.21 no.3
    • /
    • pp.315-332
    • /
    • 2005
  • The Element-free Galerkin Method has become a very popular tool for the simulation of mechanical problems with moving boundaries. The internally applied Moving Least Squares interpolation uses in general Gaussian or cubic weighting functions and has compact support. Due to the approximative character of this interpolation the obtained shape functions do not fulfill the interpolation conditions, which causes additional numerical effort for the application of the boundary conditions. In this paper a new weighting function is presented, which was designed for meshless shape functions to fulfill these essential conditions with very high accuracy without any additional effort. Furthermore this interpolation gives much more stable results for varying size of the influence radius and for strongly distorted nodal arrangements than existing weighting function types.

Boundary layer analysis of persistent moving horizontal needle in Blasius and Sakiadis magnetohydrodynamic radiative nanofluid flows

  • Krishna, Penem Mohan;Sharma, Ram Prakash;Sandeep, Naramgari
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1654-1659
    • /
    • 2017
  • The boundary layer of a two-dimensional forced convective flow along a persistent moving horizontal needle in an electrically conducting magnetohydrodynamic dissipative nanofluid was numerically investigated. The energy equation was constructed with Joule heating, viscous dissipation, uneven heat source/sink, and thermal radiation effects. We analyzed the boundary layer behavior of a continuously moving needle in Blasius (moving fluid) and Sakiadis (quiescent fluid) flows. We considered Cu nanoparticles embedded in methanol. The reduced system of governing Partial differential equations (PDEs) was solved by employing the Runge-Kutta-based shooting process. Computational outcomes of the rate of heat transfer and friction factors were tabulated and discussed. Velocity and temperature descriptions were examined with the assistance of graphical illustrations. Increasing the needle size did not have a significant influence on the Blasius flow. The heat transfer rate in the Sakiadis flow was high compared with that in the Blasius flow.

The Camera Tracking of Real-Time Moving Object on UAV Using the Color Information (컬러 정보를 이용한 무인항공기에서 실시간 이동 객체의 카메라 추적)

  • Hong, Seung-Beom
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.2
    • /
    • pp.16-22
    • /
    • 2010
  • This paper proposes the real-time moving object tracking system UAV using color information. Case of object tracking, it have studied to recognizing the moving object or moving multiple objects on the fixed camera. And it has recognized the object in the complex background environment. But, this paper implements the moving object tracking system using the pan/tilt function of the camera after the object's region extraction. To do this tracking system, firstly, it detects the moving object of RGB/HSI color model and obtains the object coordination in acquired image using the compact boundary box. Secondly, the camera origin coordination aligns to object's top&left coordination in compact boundary box. And it tracks the moving object using the pan/tilt function of camera. It is implemented by the Labview 8.6 and NI Vision Builder AI of National Instrument co. It shows the good performance of camera trace in laboratory environment.

Boundary Control of an Axially Moving Nonlinear Tensioned Elastic String (인장력하에서 길이방향으로 이동하는 비선형 탄성현의 경계제어)

  • 박선규;이숙재;홍금식
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.11-21
    • /
    • 2004
  • In this paper, an active vibration control of a tensioned elastic axially moving string is investigated. The dynamics of the translating string ale described by a non-linear partial differential equation coupled with an ordinary differential equation. The time varying control in the form of the right boundary transverse motions is suggested to stabilize the transverse vibration of the translating continuum. A control law based on Lyapunov's second method is derived. Exponential stability of the translating string under boundary control is verified. The effectiveness of the proposed controller is shown through the simulations.

Automatic Generation of 3-D Finite Element Meshes: Part(II) -Mesh Generation from Tetrahedron-based Octree- (삼차원 유한요소의 자동생성 (2) -사면체 옥트리로부터의 유한요소 생성-)

  • 정융호;이건우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.647-660
    • /
    • 1995
  • Given the tetrahedron-based octree approximation of a solid as described in part(I) of this thesis, in this part(II) a systematic procedure of 'boundary moving' is developed for the fully automatic generation of 3D finite element meshes. The algorithm moves some vertices of the octants near the boundary onto the exact surface of a solid without transforming the topology of octree leaf elements. As a result, the inner octree leaf elements can be used as exact tetrahedral finite element meshes. In addition, as a quality measure of a tetrahedral element, 'shape value' is propopsed and used for the generation of better finite elements during the boundary moving process.

Moving Least Squares Difference Method for the Analysis of 2-D Melting Problem (2차원 융해문제의 해석을 위한 이동최소제곱 차분법)

  • Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.39-48
    • /
    • 2013
  • This paper develops a 2-D moving least squares(MLS) difference method for Stefan problem by extending the 1-D version of the conventional method. Unlike to 1-D interfacial modeling, the complex topology change in 2-D domain due to arbitrarily moving boundary is successfully modelled. The MLS derivative approximation that drives the kinetics of moving boundary is derived while the strong merit of MLS Difference Method that utilizes only nodal computation is effectively conserved. The governing equations are differentiated by an implicit scheme for achieving numerical stability and the moving boundary is updated by an explicit scheme for maximizing numerical efficiency. Numerical experiments prove that the MLS Difference Method shows very good accuracy and efficiency in solving complex 2-D Stefan problems.

A Finite Element Hydrodynamic Model far Moving Boundary Problems (이동경계를 고려한 유한요소 해수류동모형)

  • 정태성;김창식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.3
    • /
    • pp.146-155
    • /
    • 1992
  • It has been conventional to treat the land boundary as a fixed one in numerical modeling of tidal flows, particularly in the finite element scheme. However conventional models using the fixed land boundary result in unrealistic tidal flows in inter-tidal zones which exist over wide coastal area in Korea. In this study, a 2-dimensional hydrodynamic model, using finite element method for moving boundary problems was developed. The performance of the model was tested in a rectangular channel with an open boundary at one end and a moving boundary at the other end. The model was applied to calculate the tidal currents in Maro Hae, located in the southwestern part of Korea where wide tidal flats develop. The behavior of tidal currents in the Udolmok and near the tidal flats in the study area was satisfactory when compared with the observed data. Variation of tidal currents due to the construction of Kochunam sea-dyke which barrages large area of tidal flat was presented. The results of this study confirm the efficiency of moving boundary treatment in coastal numerical models.

  • PDF

Numerical Study of Interior Ballistics with Moving Boundary

  • Sung, Hyung-Gun;Park, Sol;Hong, Gi-Cheol;Roh, Tae-Seong;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.659-665
    • /
    • 2008
  • The 1-D numerical study of the interior ballistics has been conducted. The unsteady compressible 1-D CFD code using SIMPLER algorithm and QUICK scheme has been developed. The mathematical model of the two-phase flow has been established for the behavior of the interior ballistics. The moving boundary due to the projectile motion as the physical phenomena of the interior ballistics results in the varied control volume. In order to analyze the moving boundary, the numerical codes, which apply the ghost-cell extrapolation method and the Lagrangian method respectively, have been developed. The ghost-cell extrapolation method has been used in the Eulerian coordinate system. The Lagrangian method has been used in Non-Eulerian coordinate system. These codes have been verified through the analysis of the free piston motion problem in the tube. Through this study, the basic techniques of the numerical code for the multi-dimensional two-phase flow of the interior ballistics have been obtained.

  • PDF