• Title/Summary/Keyword: Moving Boundary

Search Result 575, Processing Time 0.026 seconds

Vibration Characteristics of Pipe Element Containing Moving Medium by a Transfer Matrix (전달행렬을 이용한 유동매체를 가진 배관요소의 진동특성 분석)

  • 이영신;천일환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.366-375
    • /
    • 1991
  • In this study, vibrational behavior of uniform pipe carrying a moving medium is studied by using a transfer matrix and the displacement function derived from the conventional beam theory. In various boundary conditions, flow velocity and mechanical property change of the variation of natural frequency are investigated. The Coriolis term in the original differential equation of motion has been ignored in the investigation. This method is used to study the variation of natural frequency with flow velocity for clamped-clamped, cantilevered, clamped-pinned, pinned-pinned, free-free straight pipe element. It is shown that clamped-clamped, free-free pipe have the highest natural frequency and critical velocity values while cantilevered pipe have the smallest natural frequency for the same mechanical properties. From the vibration effects of mechanical property variation, it is shown that bending stiffness and pipe length variation has large influence on natural frequency and critical velocity. Since the order of transfer matrix is not changed with boundary conditions of pipe element, this method proposed can be easily applied to personal-computer for vibration analysis of pipe element. Furthermore, this method can be extended to three-dimensional system by using a coordinate transformation for the analysis of piping systems.

Unsteady Aerodynamic Analysis of an Air-Pressure-Levitated High-Speed Ground Vehicle (공압부양 고속 지상운송채의 비정상 공력해석)

  • Cho, Jeong-Hyun;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.728-733
    • /
    • 2008
  • Unsteady aerodynamic analysis of an air-pressure-levitated high-speed ground vehicle moving over the nonplanar ground surface are performed using the boundary-element method. The potential flow solution is included in a time-stepping loop and the wake is captured as part of the solution. When the vehicle moving inside the channel, the lift coefficient and the pitching moment coefficient of the vehicle are increased further because the air trapped by the channel increases the ground effect. In other words, the nonplanar ground surface such as the channel decreases further the longitudinal stability of the vehicle. On the other hand, there is little difference between the ground and the channel in the lateral stability of the vehicle because the lift increment due to the nonplanar ground surface such as the channel takes place on both sides of the wing with the same rate of increase.

The Flow Instability Over the Infinite Rotating Disk

  • Lee, Yun-Yong;Hwang, Young-Kyu;Lee, Kwang-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1388-1396
    • /
    • 2003
  • The hydrodynamic instability of the three-dimensional boundary layer on a rotating disk introduces a periodic modulation of the mean flow in the form of stationary cross flow vortices. The instability labeled Type II by Faller occurs first at lower Reynolds number than that of well known Type I instability. Detailed numerical values of the amplification rates, neutral curves and other characteristics of the two instabilities have been calculated over a wide range of parameters. Presented are the neutral stability results concerning the two instability modes by solving the appropriate linear stability equations reformulated not only by considering whole convective terms but also by correcting some errors in the previous stability equations. The present stability results agree with the previously known ones within reasonable limit. Consequently, the flow is found to be always stable for a disturbance whose dimensionless wave number is greater than 0.75. Some spatial amplification contours have been computed for the stationary disturbance wave, whose azimuth angle $\varepsilon$= 11.29$^{\circ}$ to 15$^{\circ}$ and for the moving disturbance wave, whose azimuth angle $\varepsilon$ = 12.5$^{\circ}$ to 15$^{\circ}$. Also, some temporal amplification contours have been computed for the stationary disturbance wave, whose azimuth angle $\varepsilon$= 11.29$^{\circ}$ to 15$^{\circ}$ and for the moving disturbance wave, whose azimuth angle $\varepsilon$= 12$^{\circ}$ to 15$^{\circ}$. The flow instability was observed by using a white titanium tetrachloride gas over rotating disk system. When the numerical results are compared to the present experimental data, the numerical results agree quantitatively, indicating the existence of the selective frequency mechanism.

Applicability on Inundation for Hydrodynamic Models adopting Moving Boundary Scheme (이동경계기법을 이용한 해수유동모형의 범람 적용성)

  • Park, Seon-Jung;Kang, Ju-Whan;Moon, Seung-Rok;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.164-173
    • /
    • 2009
  • MIKE21, a commercial hydrodynamic model, was applied at the Masan Bay to evaluate the model's applicability of simulating the inundation phenomena. A storm surge/inundation model which adopts overflow computation scheme was applied together for comparison. The results of both models show correspondence with not only observed inundation area but also inundation water depth to prove their ability as inundation models. Especially, the accuracy of the MIKE21 model, which just adopts wetting/drying scheme, does not seem to be behind the inundation model. Moreover, an inundation simulation of the virtual MAEMI which was generated at preceding study, was conducted. The inundation area of the virtual MAEMI is similar to that of the real MAEMI, but inundation water depth is deeper than the real MAEMI.

A preliminary simulation for the development of an implantable pulsatile blood pump

  • Di Paolo, Jose;Insfran, Jordan F.;Fries, Exequiel R.;Campana, Diego M.;Berli, Marcelo E.;Ubal, Sebastian
    • Advances in biomechanics and applications
    • /
    • v.1 no.2
    • /
    • pp.127-141
    • /
    • 2014
  • A preliminary study of a new pulsatile pump that will work to a frequency greater than 1 Hz, is presented. The fluid-structure interaction between a Newtonian blood flow and a piston drive that moves with periodic speed is simulated. The mechanism is of double effect and has four valves, two at the input flow and two at the output flow; the valves are simulated with specified velocity of closing and reopening. The simulation is made with finite elements software named COMSOL Multiphysics 3.3 to resolve the flow in a preliminary planar configuration. The geometry is 2D to determine areas of high speeds and high shear stresses that can cause hemolysis and platelet aggregation. The opening and closing valves are modelled by solid structure interacting with flow, the rhythmic opening and closing are synchronized with the piston harmonic movement. The boundary conditions at the input and output areas are only normal traction with reference pressure. On the other hand, the fluid structure interactions are manifested due to the non-slip boundary conditions over the piston moving surfaces, moving valve contours and fix pump walls. The non-physiologic frequency pulsatile pump, from the viewpoint of fluid flow analysis, is predicted feasible and with characteristic of low hemolysis and low thrombogenesis, because the stress tension and resident time are smaller than the limit and the vortices are destroyed for the periodic flow.

Information of Flood Estimation using GIS for Three Dimensional Visualization (GIS를 이용한 2차원 홍수범람정보의 3차원 가시화)

  • Lee, Jin-Woo;Kim, Hyung-Jun;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.159-164
    • /
    • 2008
  • This study simulated the flood inundations of the Nakdong River catchment running through Yangsan, a small city located in the south eastern area of Korea by using the depth averaged two-dimensional hydrodynamic numerical model. The numerical model employs the staggered grid system including moving boundary and a finite different method to solve the Saint-Venant equations. A second order upwind scheme is used to discretize the nonlinear convection terms of the momentum equations, whereas linear terms are discretized by a second order Leap-frog scheme(Cho and Yoon, 1998). The numerical model was applied to a real topography to simulate the flood inundation of the Yangsan basin in Yangsan. The numerical result for urban district was visualization for three dimension. These results can be essentially utilized to construct the three dimensional inundation map after building the GIS-based database in local public organizations in order to protect the life and property safely.

Characteristics of Atmospheric Circulation in Sokcho Coast (속초연안에서 대기순환의 특성)

  • Choi Hyo
    • Journal of Environmental Science International
    • /
    • v.14 no.1
    • /
    • pp.41-51
    • /
    • 2005
  • Using three-dimensional non-hydrostatical numerical model with one way double nesting technique, atmo­spheric circulation in the mountainous coastal region in summer was investigated from August 13 through 15, 1995. During the day, synoptic westerly wind blows over Mt. Mishrung in the west of a coastal city, Sokcho toward the East Sea, while simultaneously, easterly upslope wind combined with both valley wind from plain (coast) toward mountain and sea-breeze from sea toward inland coast blows toward the top of the mountain. Two different directional wind systems confront each other in the mid of eastern slope of the mountain and the upslope wind goes up to the height over 2 km, becoming an easterly return flow in the upper level over the sea and making sea-breeze front with two kinds of sea-breeze circulations of a small one in the coast and a large one in the open sea. Convective boundary layer is developed with a thickness of about 1km over the ground in the upwind side of the mountain in the west and a thickness of thermal internal boundary layer from the coast along the eastern slope of the mountain is only confined to less than 200 m. On the other hand, after sunset, no prohibition of upslope wind generated during the day and downward wind combined with mountain wind from mountain towardplain and land-breeze from land toward under nocturnal radiative cooling of the ground surfaces should intensify westerly downslope wind, resulting in the formation of wind storm. As the wind storm moving down along the eastern slop causes the development of internal gravity waves with hydraulic jump motion in the coast, bounding up toward the upper level of the coastal sea, atmospheric circulation with both onshore and offshore winds like sea-breeze circulation forms in the coastal sea within 70 km until midnight and after that, westerly wind prevails in the coast and open seas.

Maritime Confidence-Building Measures and Crisis Management Systems Between Korea and China: Is it the Best Practice for Region? (한·중 해양신뢰구축 및 위기관리방안 : 역내 표준사례인가?)

  • Yoon, Sukjoon
    • Strategy21
    • /
    • s.38
    • /
    • pp.193-220
    • /
    • 2015
  • Leaving the legacies of the Cold War and other difficulties behind them, South Korea and China are building up their successful strategic cooperative partnership, moving forward toward through the development of new economic exchanges and diplomatic cooperation between the two countries, and this process is expected to gain momentum during 2015. 2015 is the third year since President Park of South Korea and President Xi of China came into office, and also the first year they have begun to implement the many declarations and promises which they have made within the context of the strategic cooperative partnership. The two nations share a common cultural heritage, and their governments should take this opportunity to leverage their partnership to enhance their economies and to improve their people's quality of life, especially for the younger generation. At a summit held in July 2014, the two leaders agreed to launch a working-level group on maritime boundary delimitation. The first meeting took place on January 29, 2015, and addressed issues of Exclusive Economic Zones (EEZs) and continental shelves in the Yellow Sea, which has an area of about 380,000 ㎢. It is greatly to be hoped that the 2015 maritime boundary delimitation meeting between South Korea and China will not impair the future of bilateral relations, but rather will improve their prospects. South Korea and China must take the opportunity to secure a definitive delimitation of their maritime boundary; their strategic cooperative partnership is in good order and China is currently taking a somewhat more flexible stance on the ECS and the SCS, so an agreement on boundaries will serve as a useful model for regional maritime cooperation.

A Study of Numerical Method for Analysis of the 3-Dimensional Nonlinear Wave-Making Problems (3차원 비선형 조파문제 해석을 위한 수치해법 연구)

  • Ha, Y.R.;An, N.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.40-46
    • /
    • 2012
  • For free surface flow problem, a high-order spectral/boundary element method is adapted as an efficient numerical tool. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time domain. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved by using the high-order spectral method and body potential is solved by using the high-order boundary element method. Using the combination of these two methods, the free surface flow problems of a submerged moving body are solved in time domain. In the present study, lifting surface theory is added to the former work to include effects of lift force. Therefore, a new formulation for the basic mathematical theory is introduced to contain the lift body in calculation.

Moving Object Tracking Scheme based on Polynomial Regression Prediction in Sparse Sensor Networks (저밀도 센서 네트워크 환경에서 다항 회귀 예측 기반 이동 객체 추적 기법)

  • Hwang, Dong-Gyo;Park, Hyuk;Park, Jun-Ho;Seong, Dong-Ook;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.44-54
    • /
    • 2012
  • In wireless sensor networks, a moving object tracking scheme is one of core technologies for real applications such as environment monitering and enemy moving tracking in military areas. However, no works have been carried out on processing the failure of object tracking in sparse sensor networks with holes. Therefore, the energy consumption in the existing schemes significantly increases due to plenty of failures of moving object tracking. To overcome this problem, we propose a novel moving object tracking scheme based on polynomial regression prediction in sparse sensor networks. The proposed scheme activates the minimum sensor nodes by predicting the trajectory of an object based on polynomial regression analysis. Moreover, in the case of the failure of moving object tracking, it just activates only the boundary nodes of a hole for failure recovery. By doing so, the proposed scheme reduces the energy consumption and ensures the high accuracy for object tracking in the sensor network with holes. To show the superiority of our proposed scheme, we compare it with the existing scheme. Our experimental results show that our proposed scheme reduces about 47% energy consumption for object tracking over the existing scheme and achieves about 91% accuracy of object tracking even in sensor networks with holes.