Applicability on Inundation for Hydrodynamic Models adopting Moving Boundary Scheme

이동경계기법을 이용한 해수유동모형의 범람 적용성

  • Park, Seon-Jung ;
  • Kang, Ju-Whan (Civil Engineering, Division of Construction Engineering, Mokpo National University) ;
  • Moon, Seung-Rok (Planning & Projecting Department, GeoSystem Research Corporation) ;
  • Yoon, Jong-Tae (Department of Civil and Environmental Engineering, Kyungsung University)
  • 박선중 (목포대학교 건설공학부 토목공학) ;
  • 강주환 (목포대학교 건설공학부 토목공학) ;
  • 문승록 ((주)지오시스템리서치 연구기획부) ;
  • 윤종태 (경성대학교 건설/환경공학과)
  • Published : 2009.04.30

Abstract

MIKE21, a commercial hydrodynamic model, was applied at the Masan Bay to evaluate the model's applicability of simulating the inundation phenomena. A storm surge/inundation model which adopts overflow computation scheme was applied together for comparison. The results of both models show correspondence with not only observed inundation area but also inundation water depth to prove their ability as inundation models. Especially, the accuracy of the MIKE21 model, which just adopts wetting/drying scheme, does not seem to be behind the inundation model. Moreover, an inundation simulation of the virtual MAEMI which was generated at preceding study, was conducted. The inundation area of the virtual MAEMI is similar to that of the real MAEMI, but inundation water depth is deeper than the real MAEMI.

상용 해수유동 모형인 MIKE21 모형의 범람모의 적용성을 평가하기 위하여 월류량 산정기법이 적용된 해일범람모형과 함께 마산만에 적용하였다. 두 모형 모두 관측된 침수범위 및 침수고와 거의 일치하는 결과를 보여 정밀격자의 해일범람모형으로써의 적용성을 확인할 수 있었다. 특히 조간대 모의기법을 확장적용한 MIKE21 모형의 결과가 범람모형의 결과에 비해 뒤지지 않는 결과를 보여 범람에의 적용성은 매우 높은 것으로 판단된다. 또한 선행연구에서 도출된 가상태풍을 모의한 결과, 침수범위는 MAEMI 내습시와 거의 유사한 반면 침수고가 증가하는 것으로 모의되었다.

Keywords

References

  1. 강주환, 문승록, 박선중 (2004). 해수유동모형에서 조간대 모의의 필요성. 대한토목학회논문집, 24(3B), 259-265
  2. 강주환, 문승록, 박선중 (2005). 조석확폭에 수반되는 조간대 영역 확대의 영향성. 한국해안해양공학회지, 17(1), 47-54
  3. 강주환, 박선중, 문승록, 윤종태 (2009). 태풍의 특성변화에 따른 경남해역 해일양상 고찰. 한국해안해양공학회지, 21(1), 1-14
  4. 김도삼, 김지민, 이광호, 이성대 (2007). 연안역에서 고파랑과 폭풍해일을 고려한 침수해석. 한국해양공학회지, 21(2), 35-41
  5. 문승록, 강태순, 남수용, 황준 (2007). 폭풍해일에 의한 해안침수예상도 작성 시나리오 연구. 한국해안해양공학회지, 19(5), 492-501
  6. 문승록, 박선중, 강주환, 윤종태 (2006). MIKE21 모형을 이용한 목포해역 해일/범람모의. 한국해안해양공학회지, 18(4), 348-359
  7. 조용식, 서승원 (2001). 이동경계를 이용한 지진해일의 최대범람구역 추산. 한국해안해양공학회지, 13(2), 100-108
  8. 조지훈 (2000). 해안범람 수치모의. 석사학위논문, 한양대학교
  9. 천재영, 이광호, 김지민, 김도삼 (2008). 태풍 매미(0314호)에 의한 마산만 주변연안역에서의 범람해석. 한국해양공학회지, 22(3), 8-17
  10. Balzano, A. (1998). Evaluation of methods for numerical simulation of wetting and drying in shallow water flow models. Coastal Engineering, 34, 83-107 https://doi.org/10.1016/S0378-3839(98)00015-5
  11. Bates, P.D. and De Roo, A.P.J. (2000). A simple raster-based model for flood inundation simulation. Journal of Hydrology, 236, 54-77 https://doi.org/10.1016/S0022-1694(00)00278-X
  12. DHI Water and Environment (2007). User guide and reference manual, Hydrodynamic Module
  13. Falconer, R.A. and Owens, P.H. (1987). Numerical simulation of flooding and drying in a depth-averaged tidal flow model. Proceedings Institution Civil Engineers, 83, 161-180 https://doi.org/10.1680/iicep.1987.346
  14. Flather, R.A. and Heaps, N.S. (1975). Tidal computations for Morecambe Bay. Geophysical Journal Royal Astronomical Society, 42, 489-517
  15. Hubbert, G.D. and McInnes, K.L. (1999). A storm surge model for coastal planning and impact studies. J. of Coastal Research, 15(1), 168-185
  16. Hunter, N.M., Horritt, M.S., Bates, P.D., Wilson, M.D. and Werner, G.F. (2005). An adaptive time step solution for raster- based storage cell modelling of floodplain inundation. Advances in Water Resources, 28, 975-991 https://doi.org/10.1016/j.advwatres.2005.03.007
  17. Ip, J.T.C., Lynch, D.R., and Friedrichs, C.T. (1998). Simulation of estuarine flooding and dewatering with application to Great Bay, New Hampshire. Estuarine Coastal & Shelf Science, 47, 119-141
  18. Iwasaki, T. and Mano, A. (1979). Two dimensional numerical simulation of tsunami run-up in the eulerial description. Proceeding Japanese Coastal Engineering Conference, JSCE, 26, 70-74 https://doi.org/10.2208/proce1970.26.70
  19. Large, W. G. and Pond, S. (1981). Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324-336 https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
  20. Leendertse, J.J. (1967). Aspects of a computational model for long water wave propagation. Memorandum RH-5299-PR, Rand Corporation, Santa Monica
  21. Madsen, H. and Jakobsen, F. (2004). Cyclone induced storm surge and flood forecasting in the northern Bay Bengal. Coastal Engineering, 51, 277-296 https://doi.org/10.1016/j.coastaleng.2004.03.001
  22. McCowan, A.D, Rasmussen, E.B. and Berg, P. (2001). Improving the performance of a two-dimensional hydraulic model for floodplain applications. Conference on Hydraulics in Civil Engineering, Hobart, Australia
  23. McCowan, A.D, Rasmussen, E.B. and Berg, P. (2001). Improving the performance of a two-dimensional hydraulic model for floodplain applications. Conference on Hydraulics in Civil Engineering, Hobart, Australia
  24. Shibaki, H., Suzuyama, K., Kim, J.I., and Sun, L. (2007). Numerical simulation of storm surge inundation induced by overflow, overtopping and dike breach. Asian and Pacific Coasts 2007, Nanjing, China
  25. Smith S.D., Banke E.G. (1975). Variation of the sea surface drag coefficient with wind speed. Quarterly Journal of the Royal Meteorological Society, 101, 665-673 https://doi.org/10.1002/qj.49710142920
  26. Stelling, G.S., Kernkamp, H.W.J. and Laguzzi, M.M. (1998). Delft flooding system (FLS): A powerful tool for inundation assessment based upon a positive flow simulation
  27. Stelling, G.S., Kernkamp, H.W.J. and Laguzzi, M.M. (1998). Delft flooding system (FLS): A powerful tool for inundation assessment based upon a positive flow simulation
  28. Weisberg, R.H. and Zheng, L. (2006). Hurricane storm surge simulations for Tampa Bay. Estuaries and Coasts, 29(6A), 899-913 https://doi.org/10.1007/BF02798649
  29. Xie, L., Pietrafesa, L.J. and Peng, M. (2004). Incorporation of a mass-conserving inundation scheme into a three dimensional storm surge model. J. of Coastal Research, 20, 1209-1223 https://doi.org/10.2112/03-0084R.1