• 제목/요약/키워드: Moving Accuracy

검색결과 894건 처리시간 0.025초

현재 기상 정보의 이동 평균을 사용한 태양광 발전량 예측 (Use of the Moving Average of the Current Weather Data for the Solar Power Generation Amount Prediction)

  • 이현진
    • 한국멀티미디어학회논문지
    • /
    • 제19권8호
    • /
    • pp.1530-1537
    • /
    • 2016
  • Recently, solar power generation shows the significant growth in the renewable energy field. Using the short-term prediction, it is possible to control the electric power demand and the power generation plan of the auxiliary device. However, a short-term prediction can be used when you know the weather forecast. If it is not possible to use the weather forecast information because of disconnection of network at the island and the mountains or for security reasons, the accuracy of prediction is not good. Therefore, in this paper, we proposed a system capable of short-term prediction of solar power generation amount by using only the weather information that has been collected by oneself. We used temperature, humidity and insolation as weather information. We have applied a moving average to each information because they had a characteristic of time series. It was composed of min, max and average of each information, differences of mutual information and gradient of it. An artificial neural network, SVM and RBF Network model was used for the prediction algorithm and they were combined by Ensemble method. The results of this suggest that using a moving average during pre-processing and ensemble prediction models will maximize prediction accuracy.

A stochastic finite element method for dynamic analysis of bridge structures under moving loads

  • Liu, Xiang;Jiang, Lizhong;Xiang, Ping;Lai, Zhipeng;Zhang, Yuntai;Liu, Lili
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.31-40
    • /
    • 2022
  • In structural engineering, the material properties of the structures such as elastic modulus, shear modulus, density, and size may not be deterministic and may vary at different locations. The dynamic response analysis of such structures may need to consider these properties as stochastic. This paper introduces a stochastic finite element method (SFEM) approach to analyze moving loads problems. Firstly, Karhunen-Loéve expansion (KLE) is applied for expressing the stochastic field of material properties. Then the mathematical expression of the random field is substituted into the finite element model to formulate the corresponding random matrix. Finally, the statistical moment of the dynamic response is calculated by the point estimation method (PEM). The accuracy and efficiency of the dynamic response obtained from the KLE-PEM are demonstrated by the example of a moving load passing through a simply supported Euler-Bernoulli beam, in which the material properties (including elastic modulus and density) are considered as random fields. The results from the KLE-PEM are compared with those from the Monte Carlo simulation. The results demonstrate that the proposed method of KLE-PEM has high accuracy and efficiency. By using the proposed SFEM, the random vertical deflection of a high-speed railway (HSR) bridge is analyzed by considering the random fields of material properties under the moving load of a train.

Continuous Location Tracking Algorithm for Moving Position Data

  • Ahn, Yoon-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권3호
    • /
    • pp.979-994
    • /
    • 2008
  • Moving objects are spatio-temporal data that change their location or shape continuously over time. Generally, if continuously moving objects are managed by a conventional database management system, the system cannot properly process the past and future location which is not stored in the database. Up to now, for the purpose of location tracking which is not stored, the linear interpolation to estimate the past location has been usually used. It is suitable for the moving objects on linear route, not curved route. In this paper, we propose a past location tracking algorithm for a moving object on curved routes, and also suggest a future location tracking algorithm using some past location information. We found that the proposed location tracking algorithm has higher accuracy than the linear interpolation function.

  • PDF

Dynamics of an Axially Moving Bernoulli-Euler Beam: Spectral Element Modeling and Analysis

  • Hyungmi Oh;Lee, Usik;Park, Dong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제18권3호
    • /
    • pp.395-406
    • /
    • 2004
  • The spectral element model is known to provide very accurate structural dynamic characteristics, while reducing the number of degree-of-freedom to resolve the computational and cost problems. Thus, the spectral element model for an axially moving Bernoulli-Euler beam subjected to axial tension is developed in the present paper. The high accuracy of the spectral element model is then verified by comparing its solutions with the conventional finite element solutions and exact analytical solutions. The effects of the moving speed and axial tension on the vibration characteristics, wave characteristics, and the static and dynamic stabilities of a moving beam are investigated.

Decentralized Moving Average Filtering with Uncertainties

  • Song, Il Young
    • 센서학회지
    • /
    • 제25권6호
    • /
    • pp.418-422
    • /
    • 2016
  • A filtering algorithm based on the decentralized moving average Kalman filter with uncertainties is proposed in this paper. The proposed filtering algorithm presented combines the Kalman filter with the moving average strategy. A decentralized fusion algorithm with the weighted sum structure is applied to the local moving average Kalman filters (LMAKFs) of different window lengths. The proposed algorithm has a parallel structure and allows parallel processing of observations. Hence, it is more reliable than the centralized algorithm when some sensors become faulty. Moreover, the choice of the moving average strategy makes the proposed algorithm robust against linear discrete-time dynamic model uncertainties. The derivation of the error cross-covariances between the LMAKFs is the key idea of studied. The application of the proposed decentralized fusion filter to dynamic systems within a multisensor environment demonstrates its high accuracy and computational efficiency.

Spectral Element Analysis for an Axially Moving Viscoelastic Beam

  • Hyungmi Oh;Jooyong Cho;Lee, Usik
    • Journal of Mechanical Science and Technology
    • /
    • 제18권7호
    • /
    • pp.1159-1168
    • /
    • 2004
  • In this paper, a spectral element model is derived for the axially moving viscoelastic beams subject to axial tension. The viscoelastic material is represented in a general form by using the one-dimensional constitutive equation of hereditary integral type. The high accuracy of the present spectral element model is verified first by comparing the eigenvalues obtained by the present spectral element model with those obtained by using the conventional finite element model as well as with the exact analytical solutions. The effects of viscoelasticity and moving speed on the dynamics of moving beams are then numerically investigated.

Phantom을 이용한 사이버나이프 $Synchrony^{TM}$ 호흡 추적장치의 정확성 평가 (Accuracy Evaluation of CyberKnife $Synchrony^{TM}$ Respiratory Tracking System Using Phantom)

  • 김가중;배석환;임창선;김종일
    • Journal of Radiation Protection and Research
    • /
    • 제34권3호
    • /
    • pp.137-143
    • /
    • 2009
  • 본 연구는 호흡에 따라 움직임이 큰 흉부나 복부 장기의 방사선 수술에 적용되는 사이버나이프 $Synchrony^{TM}$ 호흡 추적장치의 정확성을 평가하였다. $Synchrony^{TM}$ 호흡 추적장치의 정확성 평가를 위해 금침이 삽입된 움직임 Phantom을 이용하였고, Phantom은 아크릴 볼이 들어 있는 정육면체에 Radiochromic 필름을 삽입하여 가상의 치료용적인 아크릴 볼에 21 Gy, 70% 등선량곡선으로 처방하였다. 고정된 Phantom의 금침추적방법과 움직임 Phantom의 $Synchrony^{TM}$ 호흡추적 방법으로 나누어 각각 5회 측정한 정확성 평가는 고정된 Phantom 추적 시 총 에러는 $0.0195{\sim}0.652mm$, 총 에러 평균은 0.3926 mm로 나타났으며, 움직임 Phantom을 이용한 $Synchrony^{TM}$ 호흡 추적 방법의 결과로 총 에러는 $0.4405{\sim}0.7665mm$, 총 에러 평균은 0.5673 mm로 나타나 두 방법에 유의한 차이가 없었다. 본 연구를 통해 사이버나이프 $Synchrony^{TM}$ 호흡 추적 장치의 정확성을 평가하였으며 체부의 방사선 수술 적용 시 그 유용성을 확인할수 있었다.

VELOCITY ESTIMATION OF MOVING TARGETS BY AZIMUTH DIFFERENTIALS OF SAR IMAGES;PRELIMINARY RESULTS

  • Park, Jeong-Won;Jung, Hyung-Sup;Won, Joong-Sun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.625-628
    • /
    • 2007
  • We present an efficient and robust technique to estimate the velocity of moving targets from a single SAR image. In SAR images, azimuth image shift is a well known phenomenon, which is observed in moving targets having slant-range velocity. Most methods estimated the velocity of moving targets from the distance difference between the road and moving targets or between ship and the ship wake. However, the methods could not be always applied to moving targets because it is difficult to find the road and the ship wake. We adopted a method estimating the velocity of moving targets from azimuth differentials of range-compressed image. This method is based on an assumption that Doppler center frequency shift of moving target causes a phase difference in azimuth differential values. The phase difference is linearly distorted by Doppler rate due to the geometry of SAR image. The linear distortion is eliminated from phase removal procedure, and the constant phase difference is estimated. Finally, range velocity estimates for moving targets are retrieved. This technique is tested using an ENVISAT ASAR image in which several unknown ships are presented. The theoretical accuracy of this technique is discussed by SAR simulation. The advantages and disadvantages of this method over the conventional method are also discussed.

  • PDF

A low computational cost method for vibration analysis of rectangular plates subjected to moving sprung masses

  • Nikkhoo, Ali;Asili, Soheil;Sadigh, Shabnam;Hajirasouliha, Iman;Karegar, Hossein
    • Advances in Computational Design
    • /
    • 제4권3호
    • /
    • pp.307-326
    • /
    • 2019
  • A low computational cost semi-analytical method is developed, based on eigenfunction expansion, to study the vibration of rectangular plates subjected to a series of moving sprung masses, representing a bridge deck under multiple vehicle or train moving loads. The dynamic effects of the suspension system are taken into account by using flexible connections between the moving masses and the base structure. The accuracy of the proposed method in predicting the dynamic response of a rectangular plate subjected to a series of moving sprung masses is demonstrated compared to the conventional rigid moving mass models. It is shown that the proposed method can considerably improve the computational efficiency of the conventional methods by eliminating a large number of time-varying components in the coupled Ordinary Differential Equations (ODEs) matrices. The dynamic behaviour of the system is then investigated by performing a comprehensive parametric study on the Dynamic Amplification Factor (DAF) of the moving loads using different design parameters. The results indicate that ignoring the flexibility of the suspension system in both moving force and moving mass models may lead to substantially underestimated DAF predictions and therefore unsafe design solutions. This highlights the significance of taking into account the stiffness of the suspension system for accurate estimation of the plate maximum dynamic response in practical applications.

축 방향으로 이동하는 티모센코보의 동특성 해석 (Dynamics of an Axially Moving Timoshenko Beam)

  • 김주홍;오형미;이우식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.1066-1071
    • /
    • 2002
  • The use of frequency-dependent spectral element matrix (or exact dynamic stiffness matrix) in structural dynamics is known to provide very accurate solutions, while reducing the number of degrees-of-freedom to resolve the computational and cost problems. Thus, in the present paper, the spectral element model is formulated for the axially moving Timoshenko beam under a uniform axial tension. The high accuracy of the present spectral element is then verified by comparing its solutions with the conventional finite element solutions and exact analytical solutions. The effects of the moving speed and axial tension on the vibration characteristics, the dispersion relation, and the stability of a moving Timoshenko beam are investigated, analytically and numerically.

  • PDF