• Title/Summary/Keyword: Movement Monitoring

Search Result 538, Processing Time 0.033 seconds

Evaluation of Lateral Flow in Soft Ground under Embankment (성토하부 연약지반의 측방유동 평가)

  • Hong, Won-Pyo;Cho, Sam-Deok;Lee, Jae-Ho;Lee, Kwang-Wu
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.93-100
    • /
    • 2006
  • The lateral soil movement in soft grounds undergoing improvement with application of vertical drains is analyzed on the basis of monitoring data at three fields, in which fifty six monitoring sites are located. Based on the investigations, the criterions are suggested to predict the lateral soil movement. In order to predict the lateral soil movement in the improved soft grounds by using the dimensionless parameter R suggested by Marche & Chapuis (1974), it is desirable that the maximum lateral displacement in the soft ground below the toe of embankment should be applied to calculate R instead of the lateral displacement at the toe of embankment. The lateral soil movement may increase rapidly, if the safety factor of slope is less than 1.4 in case of high ratio of H/B (Thickness of soft ground/Embankment width) such as 1.15 or is less than 1.2 in case of low ratio of H/B such as 0.05. Also, the graph suggested by Tschebotarioff (1973), which illustrates the relationship between the maximum height of embankments and the undrained shear strength of soft grounds, can be applied to the evaluation for the possibility of the lateral soil movement due to embankments on soft grounds.

A Monitoring Method of Movements in Control Rod Drive Mechanism using Wavelet Transform (웨이블릿 변환을 이용한 원자로 제어봉구동장치 동작 감시 방법)

  • Cheon, Jong-Min;Kim, Choon-Kyoung;Park, Min-Kook;Lee, Jong-Moo;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.270-272
    • /
    • 2005
  • In this paper, we proposed a new method detecting actions of some components driven by the coil excitation. Nuclear power reactors are typically controlled by the movement of several neutron-absorbing control rods into or out of the reactor core. For moving control rods, we use an electromagnetic-jack-typed mechanism, which is called Control Rod Drive Mechanism. This mechanism moves control rods by the step composed of sequential actions of components. In case any mechanical problems happen in the mechanism, the orders for the control rod movement from the higher system cannot be performed properly. This abnormal state must be monitored and the sequential actions of the components can be the monitoring target. The actions of components generate some deviations in the profiles of the currents flowing into the coils in the mechanism. We focused on this phenomena and devised a new method of detecting the actions of the components in Control Rod Drive Mechanism by using the wavelet transform for observing the current profile.

  • PDF

Seismic wave monitoring of $CO_2$ migration in water-saturated porous sandstone

  • Xue Ziqiu;Ohsumi Takashi
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.25-32
    • /
    • 2004
  • We have carried out laboratory measurements of P-wave velocity and deformation strain during $CO_2$ injection into a porous sandstone sample, in dry and water-saturated conditions. The rock sample was cylindrical, with the axis normal to the bedding plane, and fluid injection was performed from one end. Using a piezoelectric transducer array system, we mapped fluid movement during injection of distilled water into dry sandstone, and of gaseous, liquid, and supercritical $CO_2$ into a water-saturated sample. The velocity changes caused by water injection ranged from $5.61\;to\;7.52\%$. The velocity changes caused by $CO_2$ injection are typically about $-6\%$, and about $-10\%$ for injection of supercritical $CO_2$, Such changes in velocity show that the seismic method may be useful in mapping $CO_2$ movement in the subsurface. Strain normal to the bedding plane was greater than strain parallel to the bedding plane during $CO_2$ injection; injection of supercritical $CO_2$ showed a particularly strong effect. Strain changes suggest the possibility of monitoring rock mass deformation by using borehole tiltmeters at geological sequestration sites. We also found differences associated with $CO_2$ phases in velocity and strain changes during injection.

Safety Monitoring Sensor for Underground Subsidence Risk Assessment Surrounding Water Pipeline (상수도관로의 주변 지반침하 위험도 평가를 위한 안전감시 센서)

  • Kwak, Pill-Jae;Park, Sang-Hyuk;Choi, Chang-Ho;Lee, Hyun-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.306-310
    • /
    • 2015
  • IoT(Internet of Things) based underground risk assessment system surrounding water pipeline enables an advanced monitoring and prediction for unexpected underground hazards such as abrupt road-side subsidence and urban sinkholes due to a leak in water pipeline. For the development of successful assessment technology, the PSU(Water Pipeline Safety Unit) which detects the leakage and movement of water pipes. Then, the IoT-based underground risk assessment system surrounding water pipeline will be proposed. The system consists of early detection tools for underground events and correspondence services, by analyzing leakage and movement data collected from PSU. These methods must be continuous and reliable, and cover certain block area ranging a few kilometers, for properly applying to regional water supply changes.

Development and Application of Real-Time Monitoring System for Efficient Operation of Workplace in Plant Equipment Maker (플랜트 기자재 업체의 효율적인 작업장 운영을 위한 실시간 모니터링 시스템 개발 및 적용)

  • Jeong, A-Reum;Cho, Chi-Woon;Baek, Tae-Hyun
    • IE interfaces
    • /
    • v.25 no.1
    • /
    • pp.114-126
    • /
    • 2012
  • This study describes a real-time location monitoring system developed for efficient operation of workplace in plant equipment maker. This monitoring system can be applied for indoor and outdoor working environment respectively. By using the real-time tracking system based on RTLS, it is possible to track worker's movement and location of working object under indoor working environment. For outdoor working environment, the real-time monitoring system based on IDGPS is applied for work safety and balanced workload. A case study is provided to evaluate the performance of the real-time monitoring system.

Instrumentation and Software for Analysis of Arabidopsis Circadian Leaf Movement

  • Kim, Jeong-Sik;Nam, Hong-Gil
    • Interdisciplinary Bio Central
    • /
    • v.1 no.1
    • /
    • pp.5.1-5.4
    • /
    • 2009
  • This article is an addendum to the authors’ previous article (Kim, J. et al. (2008) Plant Cell 20, 307-319). The instrumentation and software described in this article were used to analyze the circadian leaf movement in the previous article. Here, we provide detailed and practical information on the instrumentation and the software. The source code of the LMA program is freely available from the authors. The circadian clock regulates a wide range of cyclic physiological responses with a 24 hour period in most organisms. Rhythmic leaf movement in plants is a typical robust manifestation of rhythms controlled by the circadian clock and has been used to monitor endogenous circadian clock activity. Here, we introduce a relatively easy, inexpensive, and simple approach for measuring leaf movement circadian rhythms using a USB-based web camera, public domain software and a Leaf Movement Assay (LMA) program. The LMA program is a semi-automated tool that enables the user to measure leaf lengths of individual Arabidopsis seedlings from a set of time-series images and generates a wave-form output for leaf rhythm. This is a useful and convenient tool for monitoring the status of a plant's circadian clock without an expensive commercial instrumentation and software.

Analysis Framework using Process Mining for Block Movement Process in Shipyards (조선 산업에서 프로세스 마이닝을 이용한 블록 이동 프로세스 분석 프레임워크 개발)

  • Lee, Dongha;Bae, Hyerim
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.6
    • /
    • pp.577-586
    • /
    • 2013
  • In a shipyard, it is hard to predict block movement due to the uncertainty caused during the long period of shipbuilding operations. For this reason, block movement is rarely scheduled, while main operations such as assembly, outfitting and painting are scheduled properly. Nonetheless, the high operating costs of block movement compel task managers to attempt its management. To resolve this dilemma, this paper proposes a new block movement analysis framework consisting of the following operations: understanding the entire process, log clustering to obtain manageable processes, discovering the process model and detecting exceptional processes. The proposed framework applies fuzzy mining and trace clustering among the process mining technologies to find main process and define process models easily. We also propose additional methodologies including adjustment of the semantic expression level for process instances to obtain an interpretable process model, definition of each cluster's process model, detection of exceptional processes, and others. The effectiveness of the proposed framework was verified in a case study using real-world event logs generated from the Block Process Monitoring System (BPMS).

Evaluation of the Movement Pattern of Squaliobarbus curriculus Inhabiting in the Mid-lower Part of Geum River Using Acoustic Telemetry (수중 음향 측정방식을 이용한 금강 중.하류의 눈불개 이동성 평가)

  • Yoon, Ju-Duk;Kim, Jeong-Hui;In, Dong-Su;Hwang, Eun-Ji;Yoon, Johee;Lee, Young-Joon;Chang, Kwang-Hyeon;Jang, Min-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.482-489
    • /
    • 2012
  • Visual monitoring is hard to apply on fish because they are living in a water system. To overcome this problem, acoustic telemetry, which is effective for underwater monitoring, is often used for studying fish behaviors, such as movement distance, route and patterns. In this study, in order to monitor the movement pattern of Squaliobarbus curriculus (family Cyprinidae), we used acoustic telemetry and identified the home range and movement distances. A total of nine individuals were released at two different locations: one is at the estuary barrage (Sc1~3) and the other is at the lower part of Baekjae Weir (Sc4~9), located in Geum River. Approximately, a 70 km section from the estuary barrage was investigated. Fish, which were released at the estuary barrage, utilized up to 12.7 km upstream as home range from the release site. At the lower part of Baekjae Weir, most of the fish moved and stayed within a 7.2 km downstream area, except for Sc6, which moved 53.4 km (linear maximum distance from release site) downstream from the release site. Relatively small sized fish (Sc7~9) did not show any movement. Accumulated movement distance significantly correlated with the standard length of S. curriculus ($r_s$=0.715, p=0.03). Moreover, the standard length of moving fish was significantly larger than that of not moving fish (Mann-Whitney U test, p=0.024). Therefore, the movement distance of S. curriculus has been correlated with fish size; movement distance was increased with the standard fish length. Although the sample size of monitored fish was small, various meaningful data were collected by acoustic telemetry. Consequently, this technique could be a method available for effectively monitoring the behavior and ecology of native Korean and endemic species.

Feasibility Study for Derivation of Tropospheric Ozone Motion Vector Using Geostationary Environmental Satellite Measurements (정지궤도 위성 대류권 오존 관측 자료를 이용한 대류권 이동벡터 산출 가능성 연구)

  • Shin, Daegeun;Kim, Somyoung;Bak, Juseon;Baek, Kanghyun;Hong, Sungjae;Kim, Jaehwan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1069-1080
    • /
    • 2022
  • The tropospheric ozone is a pollutant that causes a great deal of damage to humans and ecosystems worldwide. In the event that ozone moves downwind from its source, a localized problem becomes a regional and global problem. To enhance ozone monitoring efficiency, geostationary satellites with continuous diurnal observations have been developed. The objective of this study is to derive the Tropospheric Ozone Movement Vector (TOMV) by employing continuous observations of tropospheric ozone from geostationary satellites for the first time in the world. In the absence of Geostationary Environmental Monitoring Satellite (GEMS) tropospheric ozone observation data, the GEOS-Chem model calculated values were used as synthetic data. Comparing TOMV with GEOS-Chem, the TOMV algorithm overestimated wind speed, but it correctly calculated wind direction represented by pollution movement. The ozone influx can also be calculated using the calculated ozone movement speed and direction multiplied by the observed ozone concentration. As an alternative to a backward trajectory method, this approach will provide better forecasting and analysis by monitoring tropospheric ozone inflow characteristics on a continuous basis. However, if the boundary of the ozone distribution is unclear, motion detection may not be accurate. In spite of this, the TOMV method may prove useful for monitoring and forecasting pollution based on geostationary environmental satellites in the future.

A Study on Indoor Air Quality Monitoring System for Subway Stations (지하역사의 공기질 감시 시스템 구성에 관한 연구)

  • Lee, Byung-Seok;Hwang, Sun-Ju;Lee, Joon-Hwa;Kim, Gyu-Sik;Kim, Jo-Chun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.48-50
    • /
    • 2009
  • This paper presents an IAQ(Indoor Air Quality) Monitoring System using equipments for measurement of fine Particle($PM1{\sim}PM10$), $CO_2$, VOCs(Volatile Organic Compounds), temperature and humidity for IAQ monitoring of subway station which millions of people use a day. The necessity of IAQ monitoring system is getting increased for more effective subway station monitoring in line with the recent government's regulation for IAQ is reinforcing. Subway Station is an unusual case. The structure of subway station is closed and complicated. Therefore when data of equipments are transferred, transmission error can happen occasionally. To prevent transmission error, an IAQ Monitoring System is needed the appropriate position and selection of equipments or sensor module. In addition IT(Information Technology) can be utilized like "WiBro(Wireless Broadband)" and "GateWay" for facilitate movement of data and construction of IAQ monitoring system of subway station.

  • PDF