DOI QR코드

DOI QR Code

Evaluation of the Movement Pattern of Squaliobarbus curriculus Inhabiting in the Mid-lower Part of Geum River Using Acoustic Telemetry

수중 음향 측정방식을 이용한 금강 중.하류의 눈불개 이동성 평가

  • Yoon, Ju-Duk (Biological Resource Center, Kongju National University) ;
  • Kim, Jeong-Hui (Department of Biology Education, Kongju National University) ;
  • In, Dong-Su (Biological Resource Center, Kongju National University) ;
  • Hwang, Eun-Ji (Department of Biology Education, Kongju National University) ;
  • Yoon, Johee (Geum-River Enviornment Research Center, National Institute of Environmental Research) ;
  • Lee, Young-Joon (Geum-River Enviornment Research Center, National Institute of Environmental Research) ;
  • Chang, Kwang-Hyeon (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Jang, Min-Ho (Department of Biology Education, Kongju National University)
  • 윤주덕 (공주대학교 생물자원센타) ;
  • 김정희 (공주대학교 생물교육과) ;
  • 인동수 (공주대학교 생물자원센타) ;
  • 황은지 (공주대학교 생물교육과) ;
  • 윤조희 (국립환경과학원 금강물환경연구소) ;
  • 이영준 (국립환경과학원 금강물환경연구소) ;
  • 장광현 (경희대학교 환경학 및 환경공학과) ;
  • 장민호 (공주대학교 생물교육과)
  • Received : 2012.07.21
  • Accepted : 2012.10.23
  • Published : 2012.12.31

Abstract

Visual monitoring is hard to apply on fish because they are living in a water system. To overcome this problem, acoustic telemetry, which is effective for underwater monitoring, is often used for studying fish behaviors, such as movement distance, route and patterns. In this study, in order to monitor the movement pattern of Squaliobarbus curriculus (family Cyprinidae), we used acoustic telemetry and identified the home range and movement distances. A total of nine individuals were released at two different locations: one is at the estuary barrage (Sc1~3) and the other is at the lower part of Baekjae Weir (Sc4~9), located in Geum River. Approximately, a 70 km section from the estuary barrage was investigated. Fish, which were released at the estuary barrage, utilized up to 12.7 km upstream as home range from the release site. At the lower part of Baekjae Weir, most of the fish moved and stayed within a 7.2 km downstream area, except for Sc6, which moved 53.4 km (linear maximum distance from release site) downstream from the release site. Relatively small sized fish (Sc7~9) did not show any movement. Accumulated movement distance significantly correlated with the standard length of S. curriculus ($r_s$=0.715, p=0.03). Moreover, the standard length of moving fish was significantly larger than that of not moving fish (Mann-Whitney U test, p=0.024). Therefore, the movement distance of S. curriculus has been correlated with fish size; movement distance was increased with the standard fish length. Although the sample size of monitored fish was small, various meaningful data were collected by acoustic telemetry. Consequently, this technique could be a method available for effectively monitoring the behavior and ecology of native Korean and endemic species.

어류는 수체 내에 서식하기 때문에 시각적으로 행동이나 이동을 연구하는 데에는 어려움이 있다. 원격측정방식 중 하나인 수중음향측정 방식(acoustic telemetry)은 수생 생물 특히, 어류에 효과적으로 적용되는 방식으로 이동경로 및 거리, 패턴의 분석에 효과적이다. 본 연구에서는 국내에 서식하는 잉어과 어류인 눈불개를 대상으로 하여 수중음향측정방식을 적용, 서식처범위(home range)와 이동패턴에 대한 모니터링을 시행하였다. 연구는 금강 하구둑부터 백제보까지의 약 70 km 구간을 대상으로 총 9 개체의 눈불개를 하구둑(Sc1-3)과 백제보(Sc4-9)에서 각각 방류하여 모니터링을 진행하였다. 하구둑에서 방류한 개체들은 방류지점으로부터 12.7 km 상류지점까지를 서식처 범위로 하여 이동하는 패턴을 나타냈고, 백제보에서 방류한 개체들은 가장 하류까지 이동한 Sc6 (방류지점에서 직선거리로 53.4 km 하류까지 이동)을 제외하고 대부분 방류지점에서 7.2 km 하류 지역을 서식처 범위로 이용하고 있었다. 상대적으로 크기가 작은 Sc7, 8, 9 개체는 큰 이동을 보이지 않았다. 눈불개의 총 이동거리는 개체의 체장의 크기와 관련이 있는 것으로 나타났고($r_s$=0.715, p=0.03), 또한 이동 개체와 이동하지 않은 개체 비교 시 이동 개체들의 체장이 통계적으로 유의하게 큰 것으로 확인되었다(Mann-Whitney U test, p=0.024). 따라서 눈불개의 이동 범위는 크기와 관련이 있고, 체장이 커질수록 총 이동거리가 늘어나는 것으로 나타났다. 비록 모니터링 개체수가 많지 않았지만 대상종의 이동과 관련된 의미 있는 자료들의 수집이 가능하였으며, 연구방식이 전반적으로 국내의 다양한 어류에 안정적으로 적용이 가능하기 때문에 향후 어류의 이동을 모니터링을 하는데 있어서 활용가치가 높을 것으로 판단되었다.

Keywords

References

  1. Almeida, D., A. Almodovar, G.G. Nicola, B. Elvira and G.D. Grossman. 2012. Trophic plasticity of invasive juvenile largemouth bass Micropterus salmoides in Iberian streams. Fisheries Research 113: 153-158. https://doi.org/10.1016/j.fishres.2011.11.002
  2. An, K.G., Y.P. Hong, J.K. Kim and S.S. Choi. 1992. Studies on zonation and community analysis of freshwater fish in Kum-river. Korean Journal of Limnology 25: 99-112.
  3. Burt, W.H. 1943. Territoriality and home range concepts as applied to mammals. Journal of Mammology 24: 346-352. https://doi.org/10.2307/1374834
  4. Calles, E.O. and L.A. Greenberg. 2005. Evaluation of naturelike fishways for re-establishing connectivity in fragmented salmonid populations in the River Emån. River Research and Application 21: 951-960. https://doi.org/10.1002/rra.865
  5. Clay, H.C. 1995. Design of Fishways and Other Fish Facilities. Lewis Publishers, Boca Raton.
  6. Crook, D.A. 2004. Is the home range concept compatible with the movements of two species of lowland river fish? Journal of Animal Ecology 73: 353-366. https://doi.org/10.1111/j.0021-8790.2004.00802.x
  7. DeCicco, A.L. 1992. Long-distance movements of anadromous Dolly Varden between Alaska and the U.S.S.R. Arctic 45: 120-123.
  8. Kang, K.M., H.K. Shin, D.H. Kang and M.S. Kim. 2008. Comparison of behavior characteristics between wild and cultured black seabream Acanthopagrus schlegeli using acoustic telemetry. The Korean Journal of Fisheries Technology 44: 141-147. https://doi.org/10.3796/KSFT.2008.44.2.141
  9. Keefer, M.L., C.A. Peery and C.C. Caudill. 2006. Long-distance downstream movements by homing adult chinook salmon. Journal of Fish Biology 68: 944-950. https://doi.org/10.1111/j.0022-1112.2006.00958.x
  10. Keefer, M.L., M.L. Moser, C.T. Boggs, W.R. Daigle and C.A. Peery. 2009. Effects of body size and river environment on the upstream migration of adult pacific lampreys. North American Journal of Fisheries Management 29: 1214-1224. https://doi.org/10.1577/M08-239.1
  11. Kim, I.S. and J.Y. Park. 2002. Freshwater fish of Korea. Kyo-Hak Publishing. Seoul.
  12. Koehn, J.D. and S. Nicol. 1998. Habitat and movement requirements of fish. Proceedings of the 1996 Riverine Environment Research Forum (eds R.J. Banens and R. Lehane), pp. 1-6. Murray-Darling Basin Commission, Canberra.
  13. Lucas, M.C. and E. Baras. 2001. Migration of Freshwater Fishes. Blackwell Science, Oxford.
  14. Penczak, T. 2006. Restricted-movement paradigm: fish displacements in a small lowland streamlet. Polish Journal of Ecology 54: 145-149.
  15. Prato, E.P., C. Comoglio and O. Calles. 2011. A simple management tool for planning the restoration of river longitudinal connectivity at watershed level: priority indices for fish passes. Journal of Applied Ichthyology 27(Suppl. 3): 73-79.
  16. Reynolds, L.F. 1983. Migration patterns of five fish species in the Murray-Darling river system. Australian Journal of Marine and Freshwater Research 34: 857-871. https://doi.org/10.1071/MF9830857
  17. Rodriguez, M.A. 2002. Restricted movement in stream fish: the paradigm is incomplete, not lost. Ecology 83: 1-13.
  18. Schwartz, F.J. 1987. Homing behavior of tagged and displaced carp, Cyprinus carpio, in Pymatuning lake, Pennsylvania/Ohio. Ohio Journal of Science 87: 15-22.
  19. Shin, H.O., J.W. Tae and K.M. Kang. 2004. Acoustic telemetrical tracking of the response behavior of red seabream (Chrysophrys major) to artificial reefs. Journal of the Korean Fisheries Society 37: 433-439.
  20. Song, Y.W. 1981. A study on the classification of fish communities in the Geum river. Master thesis. Chungnam National University.
  21. Woolnough, D.A., J.A. Downing and T.J. Newton. 2009. Fish movement and habitat use depends on water body size and shape. Ecology of Freshwater Fish 18: 83-91. https://doi.org/10.1111/j.1600-0633.2008.00326.x