Browse > Article
http://dx.doi.org/10.7780/kjrs.2022.38.6.1.8

Feasibility Study for Derivation of Tropospheric Ozone Motion Vector Using Geostationary Environmental Satellite Measurements  

Shin, Daegeun (Climate Research Department, National institute of Meteorological Science)
Kim, Somyoung (Department of Atmospheric Science, Pusan National University)
Bak, Juseon (Institute of Environmental Studies, Pusan National University)
Baek, Kanghyun (Department of Atmospheric Science, Pusan National University)
Hong, Sungjae (Department of Atmospheric Science, Pusan National University)
Kim, Jaehwan (Department of Atmospheric Science, Pusan National University)
Publication Information
Korean Journal of Remote Sensing / v.38, no.6_1, 2022 , pp. 1069-1080 More about this Journal
Abstract
The tropospheric ozone is a pollutant that causes a great deal of damage to humans and ecosystems worldwide. In the event that ozone moves downwind from its source, a localized problem becomes a regional and global problem. To enhance ozone monitoring efficiency, geostationary satellites with continuous diurnal observations have been developed. The objective of this study is to derive the Tropospheric Ozone Movement Vector (TOMV) by employing continuous observations of tropospheric ozone from geostationary satellites for the first time in the world. In the absence of Geostationary Environmental Monitoring Satellite (GEMS) tropospheric ozone observation data, the GEOS-Chem model calculated values were used as synthetic data. Comparing TOMV with GEOS-Chem, the TOMV algorithm overestimated wind speed, but it correctly calculated wind direction represented by pollution movement. The ozone influx can also be calculated using the calculated ozone movement speed and direction multiplied by the observed ozone concentration. As an alternative to a backward trajectory method, this approach will provide better forecasting and analysis by monitoring tropospheric ozone inflow characteristics on a continuous basis. However, if the boundary of the ozone distribution is unclear, motion detection may not be accurate. In spite of this, the TOMV method may prove useful for monitoring and forecasting pollution based on geostationary environmental satellites in the future.
Keywords
TOMV; Tropospheric ozone; Air pollution; Geostationary satellite; GEOS-Chem;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Velden, C.S., J. Daniels, D. Stettner, D. Santek, J. Key, J. Dunion, K. Holmlund, G. Deniel, W. Bresky, and P. Menzel, 2005. Recent innovations in deriving tropospheric winds from meteorological satellites, Bulletin of the American Meteorological Society, 86(2): 205-224. https://doi.org/10.1175/BAMS86-2-205   DOI
2 Negri, R.G., L.A. Machado, and R. Borde, 2010. A tool to detect inner cloud top dynamics of deep convective system, Proc. of 10th International Winds Workshop, Tokyo, Japan, Feb. 22-26, p. 56.
3 Park, H., J.H. Kim, and S. Oh, 2018. AMVs Quality Control Method for Geo-Kompsat-2A, Proc. of 14th International Wind Workshop, Jeju, South Korea, Apr. 23-27.
4 Fehsenfeld, F.C., P. Daum, W.R. Leaitch, M. Trainer, D.D. Parrish, and G. Hubler, 1996. Transport and processing of O3 and O3 precursors over the North Atlantic: An overview of the 1993 North Atlantic Regional Experiment (NARE) summer intensive, Journal of Geophysical Research: Atmospheres, 101(D22): 28877-28891. https://doi.org/10.1029/96JD01113   DOI
5 CEOS (Committee on Earth Observation Satellites), 2019. Geostationary Satellite Constellation for Observing Global Air Quality: Geophysical Validation Needs, https://ceos.org/observations/documents/GEO_AQ_Constellation_Geophysical_Validation_Needs_1.1_2Oct2019.pdf, Accessed on Apr. 5, 2022.
6 Cooper, O.R., D.D. Parrish, J. Ziemke, N.V. Balashov, M. Cupeiro, I.E. Galbally, S. Gilge, L. Horowitz, N.R. Jensen, J.F. Lamarque, V. Naik, S.J. Oltmans, J. Schwab, D.T. Shindell, A.M. Thompson, V. Thouret, Y. Wang, and R.M. Zbinden, 2014. Global distribution and trends of tropospheric ozone: An observation-based review, Elementa: Science of the Anthropocene, 2: 000029. https://doi.org/10.12952/journal.elementa.000029   DOI
7 Holmlund, K., C. Velden, and M. Rohn, 2001. Enhanced Automated Quality Control Applied to High-Density Satellite-Derived Winds, Monthly Weather Review, 129(3): 517-529. https://doi.org/10.1175/1520-0493(2001)129%3C0517:EAQCAT%3E2.0.CO;2   DOI
8 Li, Q.B., X. Jiang, M. Chahine, Y.L. Yung, E.T. Olsen, and L. Chen, 2006. Large-scale atmospheric variability in AIRS CO2 and O3, Proc. of EOS, Transactions, American Geophysical Union Fall Meeting, San Francisco, CA, Dec. 11-15, vol. 87, pp. A511-02.
9 Buche, G., H. Karbstein, A. Kummer, and H. Fischer, 2006. Water vapour structure displacements from cloud-free Meteosat scenes and their interpretation for the wind field, Journal of Applied Meteorology and Climatology, 45(4): 556-575.   DOI
10 Deb, S.K., D.K. Sankhala, P. Kumar, and C.M. Kshtawal, 2020. Retrieval and applications of atmospheric motion vectors derived from Indian geostationary satellites INSAT-3D/INSAT-3DR, Theoretical and Applied Climatology, 140: 751-765. https://doi.org/10.1007/s00704-020-03120-8   DOI
11 Bak. J., J.H. Kim, R.J.D. Spurr, X. Liu, and M.J. Newchurch, 2019. Sensitivity study of ozone retrieval from UV measurements on geostationary platforms, Remote Sensing of Environment, 118: 309-319. https://doi.org/10.1016/j.rse.2011.11.010   DOI
12 Derwent, R.G., M.E. Jenkin, S.M. Saunders, and M.J. Pilling, 1998. Photochemical ozone creation potentials for organic compounds in northwest Europe calculated with a master Chemical mechanism, Atmospheric Environment, 32(14-15): 2429-2441. https://doi.org/10.1016/S1352-2310(98)00053-3   DOI
13 Fang, X., T.S. Saito, S. Park, Y. Ki, R. Yokouchi, and G. Prinn, 2018. Performance of back-trajectory statistical methods and inverse modeling method in locating emission sources, ACS Earth and Space Chemistry, 2(8): 843-851. https://doi.org/10.1021/acsearthspaceChem.8b00062   DOI
14 Gaudel, A., O.R. Cooper, G. Ancellet, B. Barret, A. Boynard, J.P. Burrows, C. Clerbaux, P.F. Coheur, J. Cuesta, E. Cuevas, S. Doniki, G. Dufour, F. Ebojie, G. Foret, O. Garcia, M.J. Granados-Munoz, J.W. Hannigan, F. Hase, B. Hassler, G. Huang, D. Hurtmans, D. Jaffe, N. Jones, P. Kalabokas, B. Kerridge, S. Kulawik, B. Latter, T. Leblanc, E. Le Flochmoen, W. Lin, J. Liu, X. Liu, E. Mahieu, A. McClure-Begley, J.L. Neu, M. Osman, M. Palm, H. Petetin, I. Petropavlovskikh, R. Querel, N. Rahpoe, A. Rozanov, M.G. Schultz, J. Schwab, R. Siddans, D. Smale, M. Steinbacher, H. Tanimoto, D.W. Tarasick, V. Thouret, A.M. Thompson, T. Trickl, E. Weatherhead, C. Wespes, H.M. Worden, C. Vigouroux, X. Xu, G. Zeng, and J. Ziemke, 2018. Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric Chemistry model evaluation, Elementa: Science of the Anthropocene, 6: 39. https://doi.org/10.1525/elementa.291   DOI
15 Holmlund, K., 1998. The utilization of statistical properties of satellite-derived atmospheric motion vectors to derive quality indicators, Weather and Forecasting, 13(4): 1093-1104. https://doi.org/10.1175/1520-0434(1998)013%3C1093:TUOSPO%3E2.0.CO;2   DOI
16 Kaur, I., S.K. Deb, C.M. Kishtawal, P.K. Pal, and R. Kumar, 2015. Atmospheric motion vector retrieval using improved tracer selection algorithm, Theoretical and Applied Climatology, 119(1-2): 299-312. https://doi.org/10.1007/s00704-014-1115-1   DOI
17 Liu, X., K. Chance, C.E. Sioris, M.J. Newchurch, and T.P. Kurosu, 2006. Tropospheric ozone profiles from a ground-based ultraviolet spectrometer: a new retrieval method, Applied Optics, 45(10): 2352-2359. https://doi.org/10.1364/AO.45.002352   DOI
18 van Peet, J.C.A., R.J. van der A, O.N.E. Tuinder, E. Wolfram, J. Salvador, P.F. Vevelt, and H.M. Kelder, 2014. Ozone ProfilE Retrieval Algorithm (OPERA) for nadir-looking satellite instruments in the UVVIS, Atmospheric Measurement Techniques, 7(3): 859-876. https://doi.org/10.5194/amt-7-859-2014   DOI
19 Rozanov, E., 2020. Preface: Ozone Evolution in the Past and Future, Atmosphere, 11(7): 709. https://doi.org/10.3390/books978-3-03936-829-7   DOI
20 Ziemke, J.R., S. Chandra, and P.K. Bhartia, 1998. Two new methods for deriving tropospheric column ozone from TOMS measurements: The assimilated UARS MLS/HALOE and convective-cloud differential techniques, Journal of Geophysical Research: Atmospheres, 103(D17): 22115-22127. https://doi.org/10.1029/98JD01567   DOI
21 Young, P.J., A.T. Archibald, K.W. Bowman, J.F. Lamarque, V. Naik, D.S. Stevenson, S. Tilmes, A. Voulgarakis, O. Wild, D. Bergmann, P. Cameron-Smith, I. Cionni, W.J. Collins, S.B. Dalsoren, R.M. Doherty, V. Eyring, G. Faluvegi, L.W. Horowitz, B. Josse, Y.H. Lee, I.A. MacKenzie, T. Nagashima, D.A. Plummer, M. Righi, S.T. Rumbold, R.B. Skeie, D.T. Shindell, S.A. Strode, K. Sudo, S. Szopa, and G. Zeng, 2013. Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmospheric Chemistry and Physics, 13(4): 2063-2090. https://doi.org/10.5194/acp-13-2063-2013   DOI
22 Zheng, B., D. Tong, M. Li, F. Liu, C. Hong, G. Geng, G. H. Li, X. Li, L. Peng, J. Qi, L. Yan, Y. Zhang, H. Zhao, Y. Zheng, K. He, and Q. Zhang, 2018. Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmospheric Chemistry and Physics, 18(19): 14095-14111. https://doi.org/10.5194/acp-18-14095-2018   DOI
23 Ziemke, J.R., L. D. Oman, S.A. Strode, A.R. Douglass, M.A. Olsen, R.D. McPeters, P.K. Bhartia, L. Froidevaux, G.J. Labow, J.C. Witte, A.M. Thompson, D.P. Haffner, N.A. Kramarova, S.M. Frith, L.K. Huang, G.R. Jaross, C.J. Seftor, M.T. Deland, and S.L. Taylor, 2019. Trends in global tropospheric ozone inferred from a composite record of TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI simulation, Atmospheric Chemistry and Physics, 19(5): 3257-3269. https://doi.org/10.5194/acp-19-3257-2019   DOI
24 Mettig, N., M. Weber, A. Rozanov, C. Arosio, J.P. Burrows, P. Veefkind, A.M. Thompson, R. Querel, T. Leblanc, S. Godin-Beekmann, R. Kivi, and M.B. Tully, 2021. Ozone profile retrieval from nadir TROPOMI measurements in the UV range, Atmospheric Measurement Techniques, 14(9): 6057-6082. https://doi.org/10.5194/amt-14-6057-2021   DOI
25 Nieman, S.J., W.P. Menzel, C.M. Hayden, D. Gray, T. Steven, C.S. Velden, and J. Daniels, 1997. Fully automated cloud-drift winds in NESDIS operations, Bulletin of the American Meteorological Society, 78(6): 1121-1133. https://doi.org/10.1175/1520-0477(1997)078%3C1121:FACDWI%3E2.0.CO;2   DOI
26 Jacobs, D., 1999. Introduction to Atmospheric Chemistry, Princeton University Press, Princeton, NJ, USA.
27 Stevenson, D.S., F.J. Dentener, M.G. Schultz, K. Ellingsen, T.P.C. van Noije, O. Wild, G. Zeng, M. Amann, C.S. Atherton, N. Bell, D.J. Bergmann, I. Bey, T. Butler, J. Cofala, and W. J. Collins, 2006. Multimodel ensemble simulations of present-day and near-future tropospheric ozone, Journal of Geophysical Research: Atmospheres, 111(D8). https://doi.org/10.1029/2005JD006338   DOI
28 Woo, J.H., C. Bu, J. Kim, Y.S. Ghim, and Y. Kim, 2018. Analysis of Regional and Inter-annual Changes of Air Pollutants Emissions in China, Journal of Korean Society for Atmospheric Environment, 34(1): 87-100. https://doi.org/10.5572/KOSAE.2018.34.1.087   DOI