• Title/Summary/Keyword: Mouse vessels

Search Result 50, Processing Time 0.027 seconds

Optical Imaging Technology for Real-time Tumor Monitoring

  • Shin, Yoo-kyoung;Eom, Joo Beom
    • Medical Lasers
    • /
    • v.10 no.3
    • /
    • pp.123-131
    • /
    • 2021
  • Optical imaging modalities with properties of real-time, non-invasive, in vivo, and high resolution for image-guided surgery have been widely studied. In this review, we introduce two optical imaging systems, that could be the core of image-guided surgery and introduce the system configuration, implementation, and operation methods. First, we introduce the optical coherence tomography (OCT) system implemented by our research group. This system is implemented based on a swept-source, and the system has an axial resolution of 11 ㎛ and a lateral resolution of 22 ㎛. Second, we introduce a fluorescence imaging system. The fluorescence imaging system was implemented based on the absorption and fluorescence wavelength of indocyanine green (ICG), with a light-emitting diode (LED) light source. To confirm the performance of the two imaging systems, human malignant melanoma cells were injected into BALB/c nude mice to create a xenograft model and using this, OCT images of cancer and pathological slide images were compared. In addition, in a mouse model, an intravenous injection of indocyanine green was used with a fluorescence imaging system to detect real-time images moving along blood vessels and to detect sentinel lymph nodes, which could be very important for cancer staging. Finally, polarization-sensitive OCT to find the boundaries of cancer in real-time and real-time image-guided surgery using a developed contrast agent and fluorescence imaging system were introduced.

Blood Flow Improvement Effect of Bokbunja (Rubus coreanus) Seed Oil in High-Fat Diet-Fed Mouse Model (고지방식이 섭취 마우스를 이용한 복분자종자유의 혈행 개선 효과)

  • Jeon, Hyelin;Kwak, Sungmin;Oh, Su-Jin;Nam, Hyun Soo;Han, Doo Won;Song, Yoon Seok;Song, Jinwoo;Choi, Kyung-Chul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.8
    • /
    • pp.1105-1113
    • /
    • 2015
  • Bokbunja (Rubus coreanus) is a Korean fruit and wild black raspberry that has antioxidant, anticancer, and beauty effects due to its abundant polyphenols and anthocyanins. The purpose of this study was to investigate the blood flow improvement effect of Bokbunja seed oil (BSO) in a high-fat diet-fed mouse model. We examined improvement of blood flow and its related biomarkers in vivo. Mice were divided into four groups; Control, high fat diet control (negative control, HFD), salmon oil control (positive control, HFD+commercial n-3 fatty acid), and BSO experiment groups (HFD+2 g/2,000 kcal, HFD+4 g/2,000 kcal). After the mice were sacrificed, plasma triglyceride, cholesterol, and blood flow-related biomarkers (coagulation factor 7, 12, serotonin, TXB2, PT, and aPTT) were measured in mouse blood and organs. BSO reduced blood viscosity through improvement of blood lipids (cholesterol and plasma triglycerides) as well as levels of blood coagulation factors and blood platelet activity. BSO also delayed blood coagulation time. Thus, we confirmed that BSO inhibits excessive blood clotting of blood vessels and improves blood flow. Taken together, these results suggest that BSO decreases plasma triglycerides and cholesterol and improves blood flow by regulating biomarkers.

Development of New Vitrification Method for Preimplantation Mouse Embryo

  • Ha, A-Na;Fakruzzaman, Md.;Lee, Kyeong-Lim;Wang, Erdan;Lee, Jae-Ik;Min, Chan-Sik;Kong, Il-Keun
    • Journal of Embryo Transfer
    • /
    • v.28 no.2
    • /
    • pp.141-147
    • /
    • 2013
  • The purpose of this study was attempted to new methods in mammalian embryos vitrification. This method was affected to increase of the embryo vitrification efficiency and it would be applied to the field of embryo transfer to recipient by modified loading method of embryo into 0.25 ml plastic straw. The frozen mouse embryos were carried out warmed from two different cell stages (8-cell and blastocyst, respectively) by attachment of an embryo in the vitrification straw (aV) method. All groups were cultured in M-16 medium to determine the development and survivability for 24 h, respectively. Results shown that, the survivability of two different groups were significantly different (94.8% vs. 70.9%). Total cell number was not significantly different the non-frozen blastocyst ($99.7{\pm}12.4$) compared to the post-thaw blastocyst ($94.8{\pm}15.1$). From the 8-cell embryo, total cell number of frozen blastocysts were significantly lower than others groups ($74.7{\pm}14.6$, p<0.05). In the case of cell death analysis, the blastocysts from non-frozen and frozen-thawed 8-cell group were not different ($0.0{\pm}0.0$ vs. $1.9{\pm}3.1$, p>0.05). However, the apoptotic nuclei of blastocyst were significantly observed the frozen-thawed group ($5.4{\pm}4.4$) compared to non-frozen group (p<0.05). Therefore, this new method of embryos using in-straw dilution and direct transfer into other species would be more simple procedure of embryo transfer rather than step-wise dilution method and cryopreservation vessels, so we can be applied in animal as well as human embryo cryopreservation in further.

Role of soy lecithin combined with soy isoflavone on cerebral blood flow in rats of cognitive impairment and the primary screening of its optimum combination

  • Hongrui Li;Xianyun Wang;Xiaoying Li;Xueyang Zhou;Xuan Wang;Tiantian Li;Rong Xiao;Yuandi Xi
    • Nutrition Research and Practice
    • /
    • v.17 no.2
    • /
    • pp.371-385
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Soy isoflavone (SIF) and soy lecithin (SL) have beneficial effects on many chronic diseases, including neurodegenerative diseases. Regretfully, there is little evidence to show the combined effects of these soy extractives on the impairment of cognition and abnormal cerebral blood flow (CBF). This study examined the optimal combination dose of SIF + SL to provide evidence for improving CBF and protecting cerebrovascular endothelial cells. MATERIALS/METHODS: In vivo study, SIF50 + SL40, SIF50 + SL80 and SIF50 + SL160 groups were obtained. Morris water maze, laser speckle contrast imaging (LSCI), and hematoxylin-eosin staining were used to detect learning and memory impairment, CBF, and damage to the cerebrovascular tissue in rat. The 8-hydroxy-2'-deoxyguanosine (8-OHdG) and the oxidized glutathione (GSSG) were detected. The anti-oxidative damage index of superoxide dismutase (SOD) and glutathione (GSH) in the serum of an animal model was also tested. In vitro study, an immortalized mouse brain endothelial cell line (bEND.3 cells) was used to confirm the cerebrovascular endothelial cell protection of SIF + SL. In this study, 50 µM of Gen were used, while the 25, 50, or 100 µM of SL for different incubation times were selected first. The intracellular levels of 8-OHdG, SOD, GSH, and GSSG were also detected in the cells. RESULTS: In vivo study, SIF + SL could increase the target crossing times significantly and shorten the total swimming distance of rats. The CBF in the rats of the SIF50 + SL40 group and SIF50 + SL160 group was enhanced. Pathological changes, such as attenuation of the endothelium in cerebral vessels were much less in the SIF50 + SL40 group and SIF50 + SL160 group. The 8-OHdG was reduced in the SIF50 + SL40 group. The GSSG showed a significant decrease in all SIF + SL pretreatment groups, but the GSH showed an opposite result. SOD was upregulated by SIF + SL pretreatment. Different combinations of Genistein (Gen)+SL, the secondary proof of health benefits found in vivo study, showed they have effective anti-oxidation and less side reaction on protecting cerebrovascular endothelial cell. SIF50 + SL40 in rats experiment and Gen50 + SL25 in cell test were the optimum joint doses on alleviating cognitive impairment and regulating CBF through protecting cerebrovascular tissue by its antioxidant activity. CONCLUSIONS: SIF+SL could significantly prevent cognitive defect induced by β-Amyloid through regulating CBF. This kind of effect might be attributed to its antioxidant activity on protecting cerebral vessels.

The Effect of Topical Application of Heparin with Microneedling on Skin Flap Survival (미세바늘을 이용한 헤파린의 국소 도포가 피부 피판 생존에 미치는 영향)

  • Yang, Eunjung;Kim, Sugwon
    • Archives of Plastic Surgery
    • /
    • v.36 no.3
    • /
    • pp.254-261
    • /
    • 2009
  • Purpose: The objective of this study was to evaluate the heparin effect for a viability of random - pattern dorsal flap in hairless mouse. Methods: A caudally - based random dorsal flap, measuring $1.5{\times}5cm$, was designed and heparin was applied topically after microneeding. Twenty five male hairless mice were randomly divided into control (Group1, n=5); received only microneedling (Group 2, n=5), only heparin(Group3, n=5), microneedling with saline(Group 4, n=5), and microneedling with heparin group(group5,n=5) to the flap during 7 days. The number of the capillaries were compared between the experimental groups and control group with respect to neovascularization after heparin application using imaging analysis program under hematoxylin - eosin stain. The capillary blood flow was measured by laser Doppler flowmetry. After seven days each animal was evaluated for the percentage area of the flap survival. Mann - Whitnety U test and Kruskal - Wallis statistical analysis of survival relationships was performed. Results: It can be observed increased number of the blood vessels in the experimental groups however it was not statistically significant. Blood flow of the haparin with microneedling group maintained higher than other experimental groups. Treated microneeding and heparin mice were significantly better flap viability than in controls (flap survival 67% and $54.4mm^2$ respectively; p<.01). Positive correlation was shown between flap survival rate and laser Doppler flux value only at first day after surgery. Conclusion: Heparin has a beneficial effect on capillary flow and improve peripheral circulatory disturbances in random pattern flaps.

Topical Delivery of Budesonide Emulsion Particles in the Presence of PEO-PCL-PEO Triblock Copolymers

  • Cho, Jin-Hun;Baek, Hyon-Ho;Lee, Jung-Min;Kim, Jung-Hyun;Kim, Dae-Duk;Cho, Heui-Kyoung;Cheong, In-Woo
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.969-975
    • /
    • 2009
  • This article describes the topical delivery and localization of budesonide through the hairless mouse skin. Two poly(ethylene oxide)-block-poly($\varepsilon$-caprolactone)-block-poly(ethylene oxide) (PEO-PCL-PEO) triblock copolymers (T 222 and T 252) having different CL:EO ratios were added in the preparation of budesonide particles stabilized with poly(vinyl alcohol) (PVA) and Tween 80 under ultrasonication. For comparison, a commercial PEO-PPO-PEO triblock copolymer (F68) was studied under the same condition. To demonstrate the effects of the triblock copolymer, the particle size of budesonide emulsion, entrapment efficiency, and in vitro release were measured and compared. The budesonide particles stabilized by the triblock copolymers had a diameter of ca. 350 nm with entrapment efficiencies of 66-76%. The In vitro release profiles of all samples showed an initial burst followed by sustained release. The skin penetration and permeation of budesonide were analyzed by using a Frantz diffusion cell. T 222 and T 252 exhibited higher total permeation amounts, but lower budesonide penetration amounts, than F68. The results suggest that the partitioning of budesonide in each skin layer can be adjusted in order to avoid skin thinning and negative immune response arising from the penetration of budesonide in blood vessels.

Immunohistochemical Evaluation of Angiogenesis Related Markers in Pyogenic Granuloma of Gingiva

  • Seyedmajidi, Maryam;Shafaee, Shahryar;Hashemipour, Golnarsadat;Bijani, Ali;Ehsani, Hodis
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7513-7516
    • /
    • 2015
  • Background: Pyogenic granuloma is a common non-neoplastic connective tissue proliferation. ICAM-1 and VCAM-1 are vascular adhesion molecules and CD34 is a marker for evaluation of angiogenesis. The purpose of this study was to compare the immunohistochemical expression of ICAM-1, VCAM-1 & CD34 in oral pyogenic granuloma and normal gingiva. Materials and Methods: This study was performed on thirty five formalin-fixed, paraffin embedded samples of gingival pyogenic granuloma. Also we used thirty five paraffined blocks of normal gingiva as control group which were taken from crown lengthening surgery. We employed immunohistochemistry staining for our prepared microscopic slides using monoclonal mouse anti-human antibodies against ICAM-1 (CD54), VCAM-1 (CD106) and CD34. Slides were examined under light microscope and then the mean amount of stained vessels also known as microvascular density (MVD) in highly vascularized areas (hot spots) was measured. Paired t-test and repeated measures ANOVA were used to compare the difference between quantitative variables and Chi-square test for qualitative variables in different groups. Pearson correlation coefficient was used to compare relations between quantitative variables. P<0.05 was considered significant. Results: The mean of MVD for ICAM-1, VCAM-1 and CD34 was significantly higher in pyogenic granuloma than normal gingiva (p<0.001 & p<0.001 & p<0.001, respectively). Expression of CD34 in pyogenic granuloma was significantly higher than ICAM-1 and VCAM-1 (P<0.001). Besides, expression of ICAM-1 in normal gingiva, was significantly lower than two other markers (p<0.001). Conclusions: Regarding the results, it seems that ICAM-1, VCAM-1 and CD34 are useful biomarkers in evaluation of vascular and inflammatory lesions such as gingival pyogenic granuloma and the results indicate the role of these biomarkers in pathogenesis of oral pyogenic granuloma.

630 nm-OLED Accelerates Wound Healing in Mice Via Regulation of Cytokine Release and Genes Expression of Growth Factors

  • Mo, SangJoon;Chung, Phil-Sang;Ahn, Jin Chul
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.485-495
    • /
    • 2019
  • Photobiomodulation (PBM) using organic light emitting diodes (OLEDs) surface light sources have recently been claimed to be the next generation of PBM light sources. However, the differences between light emitting diodes (LEDs) and OLED mechanisms in vitro and in vivo have not been well studied. In vivo mouse models were used to investigate the effects of OLED irradiation on cellular function and cutaneous wound healing compared to LED irradiation. Mice in the LED- and OLED-irradiated groups were subjected to irradiation with 6 J/㎠ LED and OLED (630 nm), respectively, for 14 days after wounding, and some mice were sacrificed for the experiments on days 3, 7, 10, and 14. To evaluate wound healing, we performed hematoxylin-eosin and Masson's trichrome staining and quantified collagen density by computerized image analysis. The results showed that the size of the wound, collagen density, neo-epidermis thickness, number of new blood vessels, and number of fibroblasts and neutrophils was significantly influenced by LED and OLED irradiation. The tissue levels of interleukin (IL)-β, IL-6 and tumor necrosis factor (TNF)-α were investigated by immunohistochemical staining. LED and OLED irradiation resulted in a significant increase in the tissue IL-β and IL-6 levels at the early stage of wound healing (P < 0.01), and a decrease in the tissue TNF-α level at all stages of wound healing (P < 0.05), compared to the no-treatment group. The expression levels of the genes encoding vascular endothelial growth factor and transforming growth factor-beta 1 were significantly increased in LED and OLED-irradiated wound tissue at the early stage of wound healing (P < 0.01) compared to the no-treatment group. Thus, OLED as well as LED irradiation accelerated wound healing by modulating the synthesis of anti-inflammatory cytokines and the expression levels of genes encoding growth factors, promoting collagen regeneration and reducing scarring. In conclusion, this suggests the possibility of OLED as a new light source to overcome the limitations of existing PBMs.

Korean Red Ginseng Water Extract Restores Impaired Endothelial Function by Inhibiting Arginase Activity in Aged Mice

  • Choi, Kwanhoon;Yoon, Jeongyeon;Lim, Hyun Kyo;Ryoo, Sungwoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.95-101
    • /
    • 2014
  • Cardiovascular disease is the prime cause of morbidity and mortality and the population ages that may contribute to increase in the occurrence of cardiovascular disease. Arginase upregulation is associated with impaired endothelial function in aged vascular system and thus may contribute to cardiovascular disease. According to recent research, Korean Red Ginseng water extract (KRGE) may reduce cardiovascular disease risk by improving vascular system health. The purpose of this study was to examine mechanisms contributing to age-related vascular endothelial dysfunction and to determine whether KRGE improves these functions in aged mice. Young ($10{\pm}3$ weeks) and aged ($55{\pm}5$ weeks) male mice (C57BL/6J) were orally administered 0, 10, or 20 mg/mouse/day of KRGE for 4 weeks. Animals were sacrificed and the aortas were removed. Endothelial arginase activity, nitric oxide (NO) generation and reactive oxygen species (ROS) production, endothelial nitric oxide synthase (eNOS) coupling, vascular tension, and plasma peroxynitrite production were measured. KRGE attenuated arginase activity, restored nitric oxide (NO) generation, reduced ROS production, and enhanced eNOS coupling in aged mice. KRGE also improved vascular tension in aged vessels, as indicated by increased acetylcholine-induced vasorelaxation and improved phenylephrine-stimulated vasoconstriction. Furthermore, KRGE prevented plasma peroxynitrite formation in aged mice, indicating reduced lipid peroxidation. These results suggest KRGE exerts vasoprotective effects by inhibiting arginase activity and augmenting NO signaling and may be a useful treatment for age-dependent vascular diseases.

CXCR4-STAT3 Axis Plays a Role in Tumor Cell Infiltration in an Orthotopic Mouse Glioblastoma Model

  • Han, Ji-hun;Yoon, Jeong Seon;Chang, Da-Young;Cho, Kyung Gi;Lim, Jaejoon;Kim, Sung-Soo;Suh-Kim, Haeyoung
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.539-550
    • /
    • 2020
  • Glioblastoma multiforme (GBM) is a fatal malignant tumor that is characterized by diffusive growth of tumor cells into the surrounding brain parenchyma. However, the diffusive nature of GBM and its relationship with the tumor microenvironment (TME) is still unknown. Here, we investigated the interactions of GBM with the surrounding microenvironment in orthotopic xenograft animal models using two human glioma cell lines, U87 and LN229. The GBM cells in our model showed different features on the aspects of cell growth rate during their development, dispersive nature of glioma tumor cells along blood vessels, and invasion into the brain parenchyma. Our results indicated that these differences in the two models are in part due to differences in the expression of CXCR4 and STAT3, both of which play an important role in tumor progression. In addition, the GBM shows considerable accumulation of resident microglia and peripheral macrophages, but polarizes differently into tumor-supporting cells. These results suggest that the intrinsic factors of GBM and their interaction with the TME determine the diffusive nature and probably the responsiveness to non-cancer cells in the TME.