• Title/Summary/Keyword: Mouse bone marrow

Search Result 249, Processing Time 0.024 seconds

Effects of rhubarb extract on osteoclast differentiation in bone marrow-derived macrophages (대황 추출물이 골수유래 대식세포의 파골세포 분화에 미치는 영향)

  • In-A Cho
    • Journal of Korean society of Dental Hygiene
    • /
    • v.23 no.4
    • /
    • pp.219-226
    • /
    • 2023
  • Objectives: This study aimed to investigate the effects of rhubarb extract on osteoclast differentiation in bone marrow-derived macrophages (BMMs). Osteoclasts are vital for bone resorption and remodeling. Osteoclast dysregulation can contribute to various bone-related disorders that directly affect oral health. Rhubarb, a medicinal plant with anti-inflammatory properties, has been shown to modulate bone metabolism. Methods: BMMs were isolated from the femurs and tibias of 5-week-old C57BL/6 mice and cultured in the presence of mouse macrophage colony-stimulating factor (M-CSF) for 3 days. Subsequently, BMMs were treated with M-CSF and receptor activator of nuclear factor-κB ligand (RANKL) to induce osteoclast differentiation. Results: Rhubarb extract effectively suppressed osteoclast differentiation in BMMs. Furthermore, rhubarb extract inhibited the mRNA expression of tartrate-resistant acid phosphatase (TRAP) and cathepsin K (CTSK), which are essential for osteoclastogenesis. Moreover, it inhibited the RANKL-induced expression of nuclear factor of activated T cell c1 (NFATc1), a crucial transcription factor in osteoclast differentiation. Conclusions: These results suggest that rhubarb extract promotes oral health by inhibiting osteoclastogenesis in BMMs. Thus, rhubarb extract shows promise as a therapeutic agent for bone-related disorders that directly affect oral health, particularly those associated with abnormal osteoclast activity. Further research and exploration of the underlying mechanisms are warranted to fully understand their potential clinical applications.

Combination Therapy for Gliomas Using Temozolomide and Interferon-Beta Secreting Human Bone Marrow Derived Mesenchymal Stem Cells

  • Park, Jae-Hyun;Ryu, Chung Heon;Kim, Mi Jin;Jeun, Sin-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.5
    • /
    • pp.323-328
    • /
    • 2015
  • Objective : Malignant gliomas are the most common primary tumors of the central nervous system and the prognosis of patients with gliomas is poor. The combination of interferon-bata (IFN-${\beta}$) and temozolomide (TMZ) has shown significant additive antitumor effects in human glioma xenograft models. Considering that the poor survival of patients with human malignant gliomas relates partly to the inability to deliver therapeutic agents to the tumor, the tropism of human bone marrow-derived mesenchymal stem cells (MSC) for malignant gliomas can be exploited to therapeutic advantages. We investigated the combination effects of TMZ and MSCs that secrete IFN-${\beta}$ on gliomas. Methods : We engineered human MSCs to secret mouse IFN-${\beta}$ (MSC-IFN-${\beta}$) via adenoviral transduction and confirmed their secretory capacity using enzyme-linked immunosorbent assays. In vitro and in vivo experiments were performed to determine the effects of the combined TMZ and MSC-IFN-${\beta}$ treatment. Results : In vitro, the combination of MSC-IFN-${\beta}$ and TMZ showed significantly enhanced antitumor effects in GL26 mouse glioma cells. In vivo, the combined MSC-IFN-${\beta}$ and TMZ therapy significantly reduced the tumor size and improved the survival rates compared to each treatment alone. Conclusion : These results suggest that MSCs can be used as an effective delivery vehicle so that the combination of MSC-IFN-${\beta}$ and TMZ could be considered as a new option for the treatment of malignant gliomas.

The RBE of Fractionated Fast Neutron on Walker 256 Carcinosarcoma with KCCH-Cyclotron (Walker 256 Carcinosarcoma의 원자력병원 싸이클로트론 속중성자선 분할조사에 대한 생물학적 효과비에 관한 연구)

  • Yoo, Seong-Yul;Koh, Kyoung-Hwan;Cho, Chul-Koo;Park, Charn-Il;Kang, Wee-Saing
    • Radiation Oncology Journal
    • /
    • v.5 no.2
    • /
    • pp.75-82
    • /
    • 1987
  • For evaluation of biological effect of $p^+(50.5MeV)$ Be neutron beam produced by Korea Cancer Center Hospital (KCCH) cyclotron the RBE had been measured in experimental tumor Walker 256 carcinosarcoma as well as normal tissue, mouse intestine and bone marrow, in single and fractionated irradiation. As pilot study, the RBE had been measured for the mouse jejunal crypt cells in single whole body irradiation of which the result was 2.8. The obtained RBE values of TCD 50 of Walker 256 tumor, bone marrow and intestine En single irraiation were 1.9, 1.9 and 1.5 respectively. In fractionated irradiation, the RBE value of tumor Walker 256 was decreased as increasing of fraction number and increased as increaing of fraction size.

  • PDF

Xylitol Mitigate Neutrophil Inflammatory Response Against Porphyromonas gingivalis Infection

  • Na, Hee Sam;Song, YuRi;Choi, Yoon Hee;Chung, Jin
    • International Journal of Oral Biology
    • /
    • v.43 no.3
    • /
    • pp.141-146
    • /
    • 2018
  • Periodontitis is generally a chronic disorder characterized by breakdown of tooth-supporting tissues, producing dentition loss. Porphyromonas gingivalis (P. gingivalis), a Gramnegative anaerobic rod, is one of the major pathogens associated with periodontitis. Neutrophils are first line defense cells in the oral cavity that play a significant role in inflammatory response. Xylitol is a known anti-caries agent and has anti-inflammatory effects. In this study, we conducted experiments to evaluate anti-inflammatory effects of xylitol on P. gingivalis infected neutrophils for possible usage in prevention and treatment of periodontal infections. P. gingivalis was intraperitoneally injected and peritoneal lavage was collected for cytokine determination. For in vitro study, neutrophils were collected from mouse peritoneal cells after zymosan injection or bone marrow cells. Neutrophils were stimulated with live P. gingivalis and ELISA was used to determine the effect of xylitol on P. gingivalis induced cytokine production. $IL-1{\beta}$, IL-6, $TNF-{\alpha}$ concentration and neutrophil population in the peritoneal lavage was increased in P. gingivalis-infected mouse. Peritoneal cells infected with live P. gingivalis revealed significantly increased production of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ at multiplicity of infection of 10. Neutrophils from bone marrow and peritoneal lavage revealed increased production of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$. Xylitol significantly mitigated P. gingivalis induced cytokine production in neutrophils. Findings indicate that xylitol is an anti-inflammatory agent in neutrophils infected with live P. gingivalis, that suggests its use in periodontitis management.

Establishing the Genotoxicological Safety of Gamma-irradiated Egg White and Yolk (감마선 조사 계란의 유전독성학적 안전성 평가)

  • Song, Hyun-Pa;Shin, Eun-Hye;Yun, Hye-Jeong;Jo, Cheor-Un;Kim, Dong-Ho
    • Food Science and Preservation
    • /
    • v.16 no.5
    • /
    • pp.782-788
    • /
    • 2009
  • The genotoxicological safety of gamma-irradiated egg white and yolk was examined to ensure that required safety parameters were met, and in an effort to further apply gamma-irradiation for improvement of the hygienic qualities of eggs. Egg white and yolk were irradiated at 20 kGy, much higher than the legally approved dose (less than 5 kGy), and possible genotoxicity was evaluated using in vitro and in vivo tests. The SOS chromotest employing Escherichia coli PQ37, and a chromosomal aberration test in cultured Chinese hamster lung (CHL) cells, were performed in vitro with or without metabolic activation (S9). An in vivo micronucleus development test was conducted using mouse bone marrow cells. Negative results were obtained in the SOS chromotest. The incidence of chromosomal aberration in CHL cells and the frequency of micronuclear developmentin mouse bone marrow cells treated with irradiated samples were not significantly different from those of non-irradiated controls. Thus, it may be concluded that up to 20 kGy of gamma irradiation applied to egg white and yolk did not show any genotoxic effects under our experimental conditions.

Bone Marrow Progenitors and IL-2 Signaling Contribute to the Strain Differences of Kidney Innate Lymphoid Cells

  • Seungwon Ryu;Hye Young Kim
    • IMMUNE NETWORK
    • /
    • v.23 no.2
    • /
    • pp.15.1-15.17
    • /
    • 2023
  • Innate lymphoid cells (ILCs) are critical immune-response mediators. Although they largely reside in mucosal tissues, the kidney also bears substantial numbers. Nevertheless, kidney ILC biology is poorly understood. BALB/c and C57BL/6 mice are known to display type-2 and type-1 skewed immune responses, respectively, but it is unclear whether this extends to ILCs. We show here that indeed, BALB/c mice have higher total ILCs in the kidney than C57BL/6 mice. This difference was particularly pronounced for ILC2s. We then showed that three factors contributed to the higher ILC2s in the BALB/c kidney. First, BALB/c mice demonstrated higher numbers of ILC precursors in the bone marrow. Second, transcriptome analysis showed that compared to C57BL/6 kidneys, the BALB/c kidneys associated with significantly higher IL-2 responses. Quantitative RT-PCR also showed that compared to C57BL/6 kidneys, the BALB/c kidneys expressed higher levels of IL-2 and other cytokines known to promote ILC2 proliferation and/or survival (IL-7, IL-33, and thymic stromal lymphopoietin). Third, the BALB/c kidney ILC2s may be more sensitive to the environmental signals than C57BL/6 kidney ILC2s since they expressed their transcription factor GATA3 and the IL-2, IL-7, and IL-25 receptors at higher levels. Indeed, they also demonstrated greater responsiveness to IL-2 than C57BL/6 kidney ILC2s, as shown by their greater STAT5 phosphorylation levels after culture with IL-2. Thus, this study demonstrates previously unknown properties of kidney ILC2s. It also shows the impact of mouse strain background on ILC2 behavior, which should be considered when conducting research on immune diseases with experimental mouse models.

In vivo Radioprotective Effects of Basic Fibroblast Growth Factor in C3H Mice (Basic Fibroblast Growth Factor (bFGF)의 방사선보호작용에 대한 실험적 연구)

  • Kim, Yeon-Shil;Yoon, Sei-Chul
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.253-263
    • /
    • 2002
  • Purpose : In order to understand in vivo radiation damage modifying of bFGF on jejunal mucosa, bone marrow and the effect of bFGF on the growth of transplanted mouse sarcoma 180 tumor in mice. Materials and Methods : Mice were treated with $6\;{\mu}g$ of bFGF at 24 hours and 4 hours before exposing to 600 cGy, 800 cGy and 1,000 cGy total body irradiation (TBI), and then exposed to 3,000 cGy local radiation therapy on the tumor bearing thigh. Survival and tumor growth curve were plotted in radiation alone group and combined group of bFGF and irradiation (RT). Histologic examination was performed in another experimental group. Experimental groups consisted of normal control, tumor control, RT (radiation therapy) alone, $6\;{\mu}g$ bFGF alone, combined group of $3\;{\mu}g$ bFGF and irradiation (RT), combined group of $6\;{\mu}g$ bFGF and irradiation (RT). Histologic examination was peformed with H-E staining in marrow, jejunal mucosa, lung and sarcoma 180 bearing tumor. Radiation induced apoptosis was determined in each group with the DNA terminal transferase nick-end labeling method ($ApopTag^{\circledR}$ S7100-kit, Intergen Co.) Results : The results were as follows 1) $6\;{\mu}g$ bFGF given before TBI significantly improved the survival of lethally irradiated mice. bFGF would protect against lethal bone marrow syndrome. 2) $6\;{\mu}g$ bFGF treated group showed a significant higher crypt depth and microvilli length than RT alone group (p<0.05). 3) The bone marrow of bFGF treated group showed less hypocellularity than radiation alone group on day 7 and 14 after TBI (p<0.05), and this protective effect was more evident in $6\;{\mu}g$ bFGF treated group than that of $3\;{\mu}g$ bFGF treated group. 4) bFGF protected against early radiation induced apoptosis in intestinal crypt cell but might have had no antiapoptotic effect in bone marrow stem cell and pulmonary endothelial cells. 5) There was no significant differences in tumor growth rate between tumor control and bFGF alone groups (p>0.05). 6) There were no significant differences in histopathologic findings of lung and mouse sarcoma 180 tumor between radiation alone group and bFGF treated group. Conclusions : Our results suggest that bFGF protects small bowel and bone marrow from acute radiation damage without promoting the inoculated tumor growth in C3H mice. Improved recovery of early responding normal tissue and reduced number of radiation induced apoptosis may be possible mechanism of radioprotective effect of bFGF.

Studies of Anti-inflammation of Liriopis Tuber to Autoimmunune Diabetes in NOD Mice (NOD 당뇨병 생쥐에 미치는 맥문동의 항염증 효과)

  • Roh, Seong-Soo;Choi, Hak-Joo;Kim, Dong-Hee;Seo, Young-Bae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.766-770
    • /
    • 2008
  • Bone is a dynamic tissue that is regulated by the balance between bone-resorbing osteoclasts and bone-forming osteoblasts. Curcumin isolated from Kang-hwang (Turmeric) is widely used as a foodstuff, cosmetic, and medicine. However, the effect of curcumin isolated from Kang-hwang in osteoclast differentiation remains unknown. In this study, we sought to examine the role of curcumin in osteoclast differentiation. Here we show that curcumin greatly inhibited RANKL-mediated osteoclast differentiation in osteoclast precursors without cytotoxicity. RANKL induced the phosphorylation of p38 and JNK mitogen-activated protein kinase (MAPK) and mediated $I-{\kappa}B$ degradation in bone marrow macrophages (BMMs). However, RANKL-mediated p38 MAPK phosphorylation was inhibited by the addition of curcumin. Curcumin inhibited the mRNA expression of TRAP, c-Fos, and NFATc1 in BMMs treated with RANKL. Furthermore, the protein expression of c-Fos and NFATc1 induced by RANKL was suppressed by curcumin treatment. Taken together, our results suggest that curcumin may have a potential therapeutic role in bone-related diseases such as osteoporosis by inhibiting osteoclast differentiation.

Immunological Synergistic Effects of Combined Treatment with Herbal Preparation (HemoHIM) and Red Ginseng Extracts (마우스세포를 이용한 홍삼추출물과 생약복합추출물의 병용 처리에 따른 면역활성 효과)

  • Byun, Myung-Woo;Byun, Eui-Hong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.2
    • /
    • pp.182-190
    • /
    • 2015
  • This present study demonstrates the immunological synergistic effects of herbal preparation (HemoHIM) and red ginseng powder granule in various immune cell models (bone marrow-derived macrophages, dendritic cells, and mouse splenocytes) from mice. Both herbal preparation and red ginseng extracts were treated to bone-marrow derived macrophages, dendritic cells, and mouse splenocytes, and there was no cytotoxicity at a dose below $200{\mu}g/mL$. Cell proliferation and cytokine [tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, and IL-12] production tested in bone marrow-derived macrophages and dendritic cells significantly increased upon combined treatment. Cell surface marker (CD 80/86, MHC class I/II)-mediated immune cell activation was highly elevated by combined treatment. For cytokine production in splenocytes, combined treatment significantly increased production of Th 1 type cytokines [IL-2 and interferon (IFN)-${\gamma}$] but not Th 2 type cytokines (IL-4 and IL-10). Therefore, combined treatment with HemoHIM and red ginseng extracts is an effective method to establish powerful immunological synergy in immune cells.

Optimization of growth inducing factors for colony forming and attachment of bone marrow-derived mesenchymal stem cells regarding bioengineering application

  • Quan, Hongxuan;Kim, Seong-Kyun;Heo, Seong-Joo;Koak, Jai-Young;Lee, Joo-Hee
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.379-386
    • /
    • 2014
  • PURPOSE. These days, mesenchymal stem cells (MSCs) have received worldwide attention because of their potentiality in tissue engineering for implant dentistry. The purpose of this study was to evaluate various growth inducing factors in media for improvement of acquisition of bone marrow mesenchymal stem cells (BMMSCs) and colony forming unit-fibroblast (CFU-F). MATERIALS AND METHODS. The mouse BMMSCs were freshly obtained from female C3H mouse femur and tibia. The cells seeded at the density of $10^6$/dish in media supplemented with different density of fetal bovine serum (FBS), $1{\alpha}$, 25-dihydroxyvitamin (VD3) and recombinant human epidermal growth factor (rhEGF). After 14 days, CFU-F assay was conducted to analyze the cell attachment and proliferation, and moreover for VD3, the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay was additionally conducted. RESULTS. The cell proliferation was increased with the increase of FBS concentration (P<.05). The cell proliferation was highest at the density of 20 ng/mL rhEGF compared with 0 ng/mL and 200 ng/mL rhEGF (P<.05). For VD3, although the colony number was increased with the increase of its concentration, the difference was not statistically significant (P>.05). CONCLUTION. FBS played the main role in cell attachment and growth, and the growth factor like rhEGF played the additional effect. However, VD3 did not have much efficacy compare with the other two factors. Improvement of the conditions could be adopted to acquire more functional MSCs to apply into bony defect around implants easily.