DOI QR코드

DOI QR Code

Bone Marrow Progenitors and IL-2 Signaling Contribute to the Strain Differences of Kidney Innate Lymphoid Cells

  • Seungwon Ryu (Department of Microbiology, Gachon University College of Medicine) ;
  • Hye Young Kim (Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine)
  • Received : 2022.07.10
  • Accepted : 2022.12.21
  • Published : 2023.04.30

Abstract

Innate lymphoid cells (ILCs) are critical immune-response mediators. Although they largely reside in mucosal tissues, the kidney also bears substantial numbers. Nevertheless, kidney ILC biology is poorly understood. BALB/c and C57BL/6 mice are known to display type-2 and type-1 skewed immune responses, respectively, but it is unclear whether this extends to ILCs. We show here that indeed, BALB/c mice have higher total ILCs in the kidney than C57BL/6 mice. This difference was particularly pronounced for ILC2s. We then showed that three factors contributed to the higher ILC2s in the BALB/c kidney. First, BALB/c mice demonstrated higher numbers of ILC precursors in the bone marrow. Second, transcriptome analysis showed that compared to C57BL/6 kidneys, the BALB/c kidneys associated with significantly higher IL-2 responses. Quantitative RT-PCR also showed that compared to C57BL/6 kidneys, the BALB/c kidneys expressed higher levels of IL-2 and other cytokines known to promote ILC2 proliferation and/or survival (IL-7, IL-33, and thymic stromal lymphopoietin). Third, the BALB/c kidney ILC2s may be more sensitive to the environmental signals than C57BL/6 kidney ILC2s since they expressed their transcription factor GATA3 and the IL-2, IL-7, and IL-25 receptors at higher levels. Indeed, they also demonstrated greater responsiveness to IL-2 than C57BL/6 kidney ILC2s, as shown by their greater STAT5 phosphorylation levels after culture with IL-2. Thus, this study demonstrates previously unknown properties of kidney ILC2s. It also shows the impact of mouse strain background on ILC2 behavior, which should be considered when conducting research on immune diseases with experimental mouse models.

Keywords

Acknowledgement

This work was supported by the MD-PhD/Medical Scientist Training Program through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea. Graphic illustrations in Figs. 1A, 2A, and 5A were created with BioRender.com.

References

  1. Kim J, Ryu S, Kim HY. Innate lymphoid cells in tissue homeostasis and disease pathogenesis. Mol Cells 2021;44:301-309. 
  2. Cording S, Medvedovic J, Lecuyer E, Aychek T, Dejardin F, Eberl G. Mouse models for the study of fate and function of innate lymphoid cells. Eur J Immunol 2018;48:1271-1280.  https://doi.org/10.1002/eji.201747388
  3. Sasaki T, Moro K, Kubota T, Kubota N, Kato T, Ohno H, Nakae S, Saito H, Koyasu S. Innate lymphoid cells in the induction of obesity. Cell Rep 2019;28:202-217.e7.  https://doi.org/10.1016/j.celrep.2019.06.016
  4. Gadani SP, Smirnov I, Wiltbank AT, Overall CC, Kipnis J. Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury. J Exp Med 2017;214:285-296.  https://doi.org/10.1084/jem.20161982
  5. Kastenschmidt JM, Coulis G, Farahat PK, Pham P, Rios R, Cristal TT, Mannaa AH, Ayer RE, Yahia R, Deshpande AA, et al. A stromal progenitor and ILC2 niche promotes muscle eosinophilia and fibrosisassociated gene expression. Cell Rep 2021;35:108997. 
  6. Huang Q, Niu Z, Tan J, Yang J, Liu Y, Ma H, Lee VW, Sun S, Song X, Guo M, et al. Il-25 elicits innate lymphoid cells and multipotent progenitor type 2 cells that reduce renal ischemic/reperfusion injury. J Am Soc Nephrol 2015;26:2199-2211. 
  7. Meininger I, Carrasco A, Rao A, Soini T, Kokkinou E, Mjosberg J. Tissue-specific features of innate lymphoid cells. Trends Immunol 2020;41:902-917.  https://doi.org/10.1016/j.it.2020.08.009
  8. Kobayashi T, Motomura Y, Moro K. The discovery of group 2 innate lymphoid cells has changed the concept of type 2 immune diseases. Int Immunol 2021;33:705-709.  https://doi.org/10.1093/intimm/dxab063
  9. Hsu AT, Gottschalk TA, Tsantikos E, Hibbs ML. The role of innate lymphoid cells in chronic respiratory diseases. Front Immunol 2021;12:733324. 
  10. Ham J, Shin JW, Ko BC, Kim HY. Targeting the epithelium-derived innate cytokines: From bench to bedside. Immune Netw 2022;22:e11. 
  11. Bolus WR, Hasty AH. Contributions of innate type 2 inflammation to adipose function. J Lipid Res 2019;60:1698-1709.  https://doi.org/10.1194/jlr.R085993
  12. Wu H, Ballantyne CM. Metabolic inflammation and insulin resistance in obesity. Circ Res 2020;126:1549-1564.  https://doi.org/10.1161/CIRCRESAHA.119.315896
  13. Wang R, Wang Y, Harris DC, Cao Q. Innate lymphoid cells in kidney diseases. Kidney Int 2021;99:1077-1087.  https://doi.org/10.1016/j.kint.2020.11.023
  14. Johnson M. Laboratory mice and rats. Mater Methods 2012;2:113. 
  15. Shinagawa K, Kojima M. Mouse model of airway remodeling: strain differences. Am J Respir Crit Care Med 2003;168:959-967.  https://doi.org/10.1164/rccm.200210-1188OC
  16. Gueders MM, Paulissen G, Crahay C, Quesada-Calvo F, Hacha J, Van Hove C, Tournoy K, Louis R, Foidart JM, Noel A, et al. Mouse models of asthma: a comparison between C57BL/6 and BALB/c strains regarding bronchial responsiveness, inflammation, and cytokine production. Inflamm Res 2009;58:845-854.  https://doi.org/10.1007/s00011-009-0054-2
  17. Nials AT, Uddin S. Mouse models of allergic asthma: acute and chronic allergen challenge. Dis Model Mech 2008;1:213-220. https://doi.org/10.1242/dmm.000323
  18. Watanabe H, Numata K, Ito T, Takagi K, Matsukawa A. Innate immune response in Th1- and Th2- dominant mouse strains. Shock 2004;22:460-466.  https://doi.org/10.1097/01.shk.0000142249.08135.e9
  19. Kuroda E, Yamashita U. Mechanisms of enhanced macrophage-mediated prostaglandin E2 production and its suppressive role in Th1 activation in Th2-dominant BALB/c mice. J Immunol 2003;170:757-764.  https://doi.org/10.4049/jimmunol.170.2.757
  20. Loering S, Cameron GJ, Bhatt NP, Belz GT, Foster PS, Hansbro PM, Starkey MR. Differences in pulmonary group 2 innate lymphoid cells are dependent on mouse age, sex and strain. Immunol Cell Biol 2021;99:542-551.  https://doi.org/10.1111/imcb.12430
  21. Entwistle LJ, Gregory LG, Oliver RA, Branchett WJ, Puttur F, Lloyd CM. Pulmonary group 2 innate lymphoid cell phenotype is context specific: determining the effect of strain, location, and stimuli. Front Immunol 2020;10:3114. 
  22. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550. 
  23. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb) 2021;2:100141. 
  24. Seillet C, Mielke LA, Amann-Zalcenstein DB, Su S, Gao J, Almeida FF, Shi W, Ritchie ME, Naik SH, Huntington ND, et al. Deciphering the innate lymphoid cell transcriptional program. Cell Rep 2016;17:436-447. 
  25. Yu X, Wang Y, Deng M, Li Y, Ruhn KA, Zhang CC, Hooper LV. The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor. eLife 2014;3:e04406. 
  26. Berrett H, Qian L, Roman O, Cordova A, Simmons A, Sun XH, Alberola-Ila J. Development of type 2 innate lymphoid cells is selectively inhibited by sustained E protein activity. Immunohorizons 2019;3:593-605.  https://doi.org/10.4049/immunohorizons.1900045
  27. Ghaedi M, Shen ZY, Orangi M, Martinez-Gonzalez I, Wei L, Lu X, Das A, Heravi-Moussavi A, Marra MA, Bhandoola A, et al. Single-cell analysis of RORα tracer mouse lung reveals ILC progenitors and effector ILC2 subsets. J Exp Med 2020;217:e20182293. 
  28. Zeis P, Lian M, Fan X, Herman JS, Hernandez DC, Gentek R, Elias S, Symowski C, Knopper K, Peltokangas N, et al. In situ maturation and tissue adaptation of type 2 innate lymphoid cell progenitors. Immunity 2020;53:775-792.e9.  https://doi.org/10.1016/j.immuni.2020.09.002
  29. Corral D, Charton A, Krauss MZ, Blanquart E, Levillain F, Lefrancais E, Sneperger T, Vahlas Z, Girard JP, Eberl G, et al. ILC precursors differentiate into metabolically distinct ILC1-like cells during Mycobacterium tuberculosis infection. Cell Rep 2022;39:110715. 
  30. Roediger B, Kyle R, Tay SS, Mitchell AJ, Bolton HA, Guy TV, Tan SY, Forbes-Blom E, Tong PL, Koller Y, et al. IL-2 is a critical regulator of group 2 innate lymphoid cell function during pulmonary inflammation. J Allergy Clin Immunol 2015;136:1653-1663.e7.  https://doi.org/10.1016/j.jaci.2015.03.043
  31. Klose CS, Artis D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol 2016;17:765-774.  https://doi.org/10.1038/ni.3489
  32. Han M, Rajput C, Hong JY, Lei J, Hinde JL, Wu Q, Bentley JK, Hershenson MB. The innate cytokines IL-25, IL-33, and TSLP cooperate in the induction of type 2 innate lymphoid cell expansion and mucous metaplasia in rhinovirus-infected immature mice. J Immunol 2017;199:1308-1318.  https://doi.org/10.4049/jimmunol.1700216
  33. Ransick A, Lindstrom NO, Liu J, Zhu Q, Guo JJ, Alvarado GF, Kim AD, Black HG, Kim J, McMahon AP. Singlecell profiling reveals sex, lineage, and regional diversity in the mouse kidney. Dev Cell 2019;51:399-413.e7.  https://doi.org/10.1016/j.devcel.2019.10.005
  34. Maazi H, Patel N, Sankaranarayanan I, Suzuki Y, Rigas D, Soroosh P, Freeman GJ, Sharpe AH, Akbari O. ICOS:ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity. Immunity 2015;42:538-551. https://doi.org/10.1016/j.immuni.2015.02.007
  35. Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 2006;311:1924-1927.  https://doi.org/10.1126/science.1122927
  36. Villarino AV, Sciume G, Davis FP, Iwata S, Zitti B, Robinson GW, Hennighausen L, Kanno Y, O'Shea JJ. Subset- and tissue-defined STAT5 thresholds control homeostasis and function of innate lymphoid cells. J Exp Med 2017;214:2999-3014.  https://doi.org/10.1084/jem.20150907
  37. Jones DM, Read KA, Oestreich KJ. Dynamic roles for IL-2-STAT5 signaling in effector and regulatory CD4+ T cell populations. J Immunol 2020;205:1721-1730.  https://doi.org/10.4049/jimmunol.2000612
  38. Kabata H, Moro K, Koyasu S. The group 2 innate lymphoid cell (ILC2) regulatory network and its underlying mechanisms. Immunol Rev 2018;286:37-52.  https://doi.org/10.1111/imr.12706
  39. Xie C, Zhou XJ, Liu X, Mohan C. Enhanced susceptibility to end-organ disease in the lupus-facilitating NZW mouse strain. Arthritis Rheum 2003;48:1080-1092.  https://doi.org/10.1002/art.10887
  40. Xie C, Sharma R, Wang H, Zhou XJ, Mohan C. Strain distribution pattern of susceptibility to immunemediated nephritis. J Immunol 2004;172:5047-5055.  https://doi.org/10.4049/jimmunol.172.8.5047
  41. Xie C, Rahman ZS, Xie S, Zhu J, Du Y, Qin X, Zhou H, Zhou XJ, Mohan C. Strain distribution pattern of immune nephritis--a follow-up study. Int Immunol 2008;20:719-728.  https://doi.org/10.1093/intimm/dxn030
  42. Lilue J, Doran AG, Fiddes IT, Abrudan M, Armstrong J, Bennett R, Chow W, Collins J, Collins S, Czechanski A, et al. Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci. Nat Genet 2018;50:1574-1583.  https://doi.org/10.1038/s41588-018-0223-8
  43. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 2000;164:6166-6173. 
  44. Sellers RS, Clifford CB, Treuting PM, Brayton C. Immunological variation between inbred laboratory mouse strains: points to consider in phenotyping genetically immunomodified mice. Vet Pathol 2012;49:32-43. 
  45. Roan F, Obata-Ninomiya K, Ziegler SF. Epithelial cell-derived cytokines: more than just signaling the alarm. J Clin Invest 2019;129:1441-1451.  https://doi.org/10.1172/JCI124606
  46. Chen D, Tang TX, Deng H, Yang XP, Tang ZH. Interleukin-7 biology and its effects on immune cells: Mediator of generation, differentiation, survival, and homeostasis. Front Immunol 2021;12:747324. 
  47. Salimi M, Barlow JL, Saunders SP, Xue L, Gutowska-Owsiak D, Wang X, Huang LC, Johnson D, Scanlon ST, McKenzie AN, et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med 2013;210:2939-2950.  https://doi.org/10.1084/jem.20130351
  48. Yagi J, Arimura Y, Takatori H, Nakajima H, Iwamoto I, Uchiyama T. Genetic background influences Th cell differentiation by controlling the capacity for IL-2-induced IL-4 production by naive CD4+ T cells. Int Immunol 2006;18:1681-1690. 
  49. Starkey MR, McKenzie AN, Belz GT, Hansbro PM. Pulmonary group 2 innate lymphoid cells: surprises and challenges. Mucosal Immunol 2019;12:299-311.  https://doi.org/10.1038/s41385-018-0130-4
  50. Huang Y, Guo L, Qiu J, Chen X, Hu-Li J, Siebenlist U, Williamson PR, Urban JF Jr, Paul WE. IL-25- responsive, lineage-negative KLRG1hi cells are multipotential 'inflammatory' type 2 innate lymphoid cells. Nat Immunol 2015;16:161-169.  https://doi.org/10.1038/ni.3078
  51. Huang Y, Paul WE. Inflammatory group 2 innate lymphoid cells. Int Immunol 2016;28:23-28.