• Title/Summary/Keyword: Mouse Stroke

Search Result 45, Processing Time 0.018 seconds

Comparison of Cerebral Cortex Transcriptome Profiles in Ischemic Stroke and Alzheimer's Disease Models

  • Juhyun Song
    • Clinical Nutrition Research
    • /
    • v.11 no.3
    • /
    • pp.159-170
    • /
    • 2022
  • Ischemic stroke and Alzheimer's disease (AD) are representative geriatric diseases with a rapidly increasing prevalence worldwide. Recent studies have reported an association between ischemic stroke neuropathology and AD neuropathology. Ischemic stroke shares some similar characteristics with AD, such as glia activation-induced neuroinflammation, amyloid beta accumulation, and neuronal cell loss, as well as some common risk factors with AD progression. Although there are considerable similarities in neuropathology between ischemic stroke and AD, no studies have ever compared specific genetic changes of brain cortex between ischemic stroke and AD. Therefore, in this study, I compared the cerebral cortex transcriptome profile of 5xFAD mice, an AD mouse model, with those of middle cerebral artery occlusion (MCAO) mice, an ischemic stroke mouse model. The data showed that the expression of many genes with important functional implications in MCAO mouse brain cortex were related to synaptic dysfunction and neuronal cell death in 5xFAD mouse model. In addition, changes in various protein-coding RNAs involved in synaptic plasticity, amyloid beta accumulation, neurogenesis, neuronal differentiation, glial activation, inflammation and neurite outgrowth were observed. The findings could serve as an important basis for further studies to elucidate the pathophysiology of AD in patients with ischemic stroke.

Neuroprotective effects of Korean White ginseng and Red ginseng in an ischemic stroke mouse model

  • Jin, Myungho;Kim, Kyung-Min;Lim, Chiyeon;Cho, Suin;Kim, Young Kyun
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.275-282
    • /
    • 2022
  • Background: Stroke is a neurological disorder characterized by brain tissue damage following a decrease in oxygen supply to brain due to blocked blood vessels. Reportedly, 80% of all stroke cases are classified as cerebral infarction, and the incidence rate of this condition increases with age. Herein, we compared the efficacies of Korean White ginseng (WG) and Korean Red Ginseng (RG) extracts (WGex and RGex, respectively) in an ischemic stroke mouse model and confirmed the underlying mechanisms of action. Methods: Mice were orally administered WGex or RGex 1 h before middle cerebral artery occlusion (MCAO), for 2 h; the size of the infarct area was measured 24 h after MCAO induction. Then, the neurological deficit score was evaluated and the efficacies of the two extracts were compared. Finally, their mechanisms of action were confirmed with tissue staining and protein quantification. Results: In the MCAO-induced ischemic stroke mouse model, WGex and RGex showed neuroprotective effects in the cortical region, with RGex demonstrating superior efficacy than WGex. Ginsenoside Rg1, a representative indicator substance, was not involved in mediating the effects of WGex and RGex. Conclusion: WGex and RGex could alleviate the brain injury caused by ischemia/reperfusion, with RGex showing a more potent effect. At 1,000 mg/kg body weight, only RGex reduced cerebral infarction and edema, and both anti-inflammatory and anti-apoptotic pathways were involved in mediating these effects.

Effect of Tooth-Cut Induced Dental Malocclusion on Mouse Model of Ischemic Stroke (생쥐의 하악 치아 절단으로 인한 부정교합이 뇌경색에 미치는 영향)

  • Lee, Young-Jun;Lee, Byoungho;Cho, Suin
    • Journal of TMJ Balancing Medicine
    • /
    • v.9 no.1
    • /
    • pp.4-11
    • /
    • 2019
  • Objectives: Although intraoral balancing appliance therapy has been used effective to several diseases, verification studies through cerebral diseases are poorly reported so far. Thus we investigated the effect of tooth-cut induced dental malocclusion against mouse model of ischemic stroke. Methods: Tooth-cut and 90 min middle cerebral artery occlusion (MCAO) were loaded to C57BL/6 male mice, and total infarct area, neurological deficit scores (NDS), histological change of hippocampal region were observed. Production levels of reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS) in cerebral tissue were also measured. Results: The longer the tooth-cut period, the greater the area of cerebral infarction caused by MCAO, and NDS began to increase as the tooth was cut, and the results were more negative when MCAO was loaded. Histological change of hippocampal cells was significant when tooth-cut was maintained for 7 days. Those damages were thought to depend on the generation of ROS and iNOS in brain tissue. Conclusions: Since tooth-cut increased total area of cerebral infarction due to MCAO in mice, it is able to be confirmed that anomaly of the temporomandibular occlusion can affect neurological diseases.

  • PDF

Differential Protein Quantitation in Mouse Neuronal Cell Lines using Amine-Reactive Isobaric Tagging Reagents with Tandem Mass Spectrometry

  • Cho, Kun;Park, Gun-Wook;Kim, Jin-Young;Lee, Sang-Kwang;Oh, Han-Bin;Yoo, Jong-Shin
    • Mass Spectrometry Letters
    • /
    • v.1 no.1
    • /
    • pp.25-28
    • /
    • 2010
  • The high-throughput identification and accurate quantification of proteins are essential strategies for exploring cellular functions and processes in quantitative proteomics. Stable isotope tagging is a key technique in quantitative proteomic research, accompanied by automated tandem mass spectrometry. For the differential proteome analysis of mouse neuronal cell lines, we used a multiplexed isobaric tagging method, in which a four-plex set of amine-reactive isobaric tags are available for peptide derivatization. Using the four-plex set of isobaric tag for relative and absolute quantitation (iTRAQ) reagents, we analyzed the differential proteome in several stroke time pathways (0, 4, and 8 h) after the mouse neuronal cells have been stressed using a glutamate oxidant. In order to obtain a list of the differentially expressed proteins, we selected those proteins which had apparently changed significantly during the stress test. With 95% of the peptides showing only a small variation in quantity before and after the test, we obtained a list of eight up-regulated and four down-regulated proteins for the stroke time pathways. To validate the iTRAQ approach, we studied the use of oxidant stresses for mouse neuronal cell samples that have shown differential proteome in several stroke time pathways (0, 4, and 8 h). Results suggest that histone H1 might be the key protein in the oxidative injury caused by glutamate-induced cytotoxicity in HT22 cells.

Transcriptome Analysis of the Striatum of Electroacupuncture-treated Naïve and Ischemic Stroke Mice

  • Hong Ju Lee;Hwa Kyoung Shin;Ji-Hwan Kim;Byung Tae Choi
    • Journal of Pharmacopuncture
    • /
    • v.27 no.2
    • /
    • pp.162-171
    • /
    • 2024
  • Objectives: Electroacupuncture (EA) has been demonstrated to aid stroke recovery. However, few investigations have focused on identifying the potent molecular targets of EA by comparing EA stimulation between naïve and disease models. Therefore, this study was undertaken to identify the potent molecular therapeutic mechanisms underlying EA stimulation in ischemic stroke through a comparison of mRNA sequencing data obtained from EA-treated naïve control and ischemic stroke mouse models. Methods: Using both naïve control and middle cerebral artery occlusion (MCAO) mouse models, EA stimulation was administered at two acupoints, Baihui (GV20) and Dazhui (GV14), at a frequency of 2 Hz. Comprehensive assessments were conducted, including behavioral evaluations, RNA sequencing to identify differentially expressed genes (DEGs), functional enrichment analysis, protein-protein interaction (PPI) network analysis, and quantitative real-time PCR. Results: EA stimulation ameliorated the ischemic insult-induced motor dysfunction in mice with ischemic stroke. Comparative analysis between control vs. MCAO, control vs. control + EA, and MCAO vs. MCAO + EA revealed 4,407, 101, and 82 DEGs, respectively. Of these, 30, 7, and 1 were common across the respective groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed upregulated DEGs associated with the regulation of inflammatory immune response in the MCAO vs. MCAO + EA comparison. Conversely, downregulated DEGs in the control vs. control + EA comparison were linked to neuronal development. PPI analysis revealed major clustering related to the regulation of cytokines, such as Cxcl9, Pcp2, Ccl11, and Cxcl13, in the common DEGs of MCAO vs. MCAO + EA, with Esp8l1 identified as the only common downregulated DEG in both EA-treated naïve and ischemic models. Conclusion: These findings underscore the diverse potent mechanisms of EA stimulation between naïve and ischemic stroke mice, albeit with few overlaps. However, the potent mechanisms underlying EA treatment in ischemic stroke models were associated with the regulation of inflammatory processes involving cytokines.

Inhibition of LPA5 Activity Provides Long-Term Neuroprotection in Mice with Brain Ischemic Stroke

  • Sapkota, Arjun;Park, Sung Jean;Choi, Ji Woong
    • Biomolecules & Therapeutics
    • /
    • v.28 no.6
    • /
    • pp.512-518
    • /
    • 2020
  • Stroke is a leading cause of long-term disability in ischemic survivors who are suffering from motor, cognitive, and memory impairment. Previously, we have reported suppressing LPA5 activity with its specific antagonist can attenuate acute brain injuries after ischemic stroke. However, it is unclear whether suppressing LPA5 activity can also attenuate chronic brain injuries after ischemic stroke. Here, we explored whether effects of LPA5 antagonist, TCLPA5, could persist a longer time after brain ischemic stroke using a mouse model challenged with tMCAO. TCLPA5 was administered to mice every day for 3 days, starting from the time immediately after reperfusion. TCLPA5 administration improved neurological function up to 21 days after tMCAO challenge. It also reduced brain tissue loss and cell apoptosis in mice at 21 days after tMCAO challenge. Such long-term neuroprotection of TCLPA5 was associated with enhanced neurogenesis and angiogenesis in post-ischemic brain, along with upregulated expression levels of vascular endothelial growth factor. Collectively, results of the current study indicates that suppressing LPA5 activity can provide long-term neuroprotection to mice with brain ischemic stroke.

Polyamines and Their Metabolites as Diagnostic Markers of Human Diseases

  • Park, Myung Hee;Igarashi, Kazuei
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Polyamines, putrescine, spermidine and spermine, are ubiquitous in living cells and are essential for eukaryotic cell growth. These polycations interact with negatively charged molecules such as DNA, RNA, acidic proteins and phospholipids and modulate various cellular functions including macromolecular synthesis. Dysregulation of the polyamine pathway leads to pathological conditions including cancer, inflammation, stroke, renal failure and diabetes. Increase in polyamines and polyamine synthesis enzymes is often associated with tumor growth, and urinary and plasma contents of polyamines and their metabolites have been investigated as diagnostic markers for cancers. Of these, diacetylated derivatives of spermidine and spermine are elevated in the urine of cancer patients and present potential markers for early detection. Enhanced catabolism of cellular polyamines by polyamine oxidases (PAO), spermine oxidase (SMO) or acetylpolyamine oxidase (AcPAO), increases cellular oxidative stress and generates hydrogen peroxide and a reactive toxic metabolite, acrolein, which covalently incorporates into lysine residues of cellular proteins. Levels of protein-conjuagated acrolein (PC-Acro) and polyamine oxidizing enzymes were increased in the locus of brain infarction and in plasma in a mouse model of stroke and also in the plasma of stroke patients. When the combined measurements of PC-Acro, interleukin 6 (IL-6), and C-reactive protein (CRP) were evaluated, even silent brain infarction (SBI) was detected with high sensitivity and specificity. Considering that there are no reliable biochemical markers for early stage of stroke, PC-Acro and PAOs present promising markers. Thus the polyamine metabolites in plasma or urine provide useful tools in early diagnosis of cancer and stroke.

Effect of Combination Electroacupuncture and Tenuigenin on the Migration and Differentiation of Mesenchymal Stem Cells following Ischemic Stroke

  • Jae Ho Lee;Byung Tae Choi;Hwa Kyoung Shin
    • Journal of Pharmacopuncture
    • /
    • v.26 no.4
    • /
    • pp.357-365
    • /
    • 2023
  • Objectives: Since stroke is a serious health issue, novel therapeutic strategies are required. In a mouse model of ischemic stroke, this study analyzed the potential of electroacupuncture (EA) and tenuigenin (TE) to improve the efficacy of human mesenchymal stem cell (hMSC) transplantation. Methods: Middle cerebral artery occlusion (MCAO) with reperfusion was used to generate ischemic stroke. Forty-eight male C57BL/6 mice were randomly divided into five groups: control, MCAO-operated, MCAO-EA, MCAO-TE, or MCAO + EA + TE. Subsequently, hMSCs were transplanted into the ischemic region and EA, TE, or the combination was administered. Behavior assessments and immunohistochemistry were conducted to evaluate motor and cognitive recovery and hMSCs survival, migration, and differentiation. Results: The combined treatment of EA and TE exhibited enhanced hMSCs survival, migration and differentiation into neural cell lineages while suppressing astrocyte formation. Immunohistochemistry demonstrated increased neurogenesis through hMSCs transplantation in the ischemic brain. Immediate behavioral improvements were not significantly different between groups, but there was a gradual recovery in motor and cognitive function over time. Conclusion: These findings highlight the potential of EA and TE co-treatment as a therapeutic strategy for ischemic stroke, opening avenues for further research to optimize treatment protocols and elucidate underlying mechanisms.

Oleanolic Acid Provides Neuroprotection against Ischemic Stroke through the Inhibition of Microglial Activation and NLRP3 Inflammasome Activation

  • Sapkota, Arjun;Choi, Ji Woong
    • Biomolecules & Therapeutics
    • /
    • v.30 no.1
    • /
    • pp.55-63
    • /
    • 2022
  • Oleanolic acid (OA), a natural pentacyclic triterpenoid, has been reported to exert protective effects against several neurological diseases through its anti-oxidative and anti-inflammatory activities. The goal of the present study was to evaluate the therapeutic potential of OA against acute and chronic brain injuries after ischemic stroke using a mouse model of transient middle cerebral artery occlusion (tMCAO, MCAO/reperfusion). OA administration immediately after reperfusion significantly attenuated acute brain injuries including brain infarction, functional neurological deficits, and neuronal apoptosis. Moreover, delayed administration of OA (at 3 h after reperfusion) attenuated brain infarction and improved functional neurological deficits during the acute phase. Such neuroprotective effects were associated with attenuation of microglial activation and lipid peroxidation in the injured brain after the tMCAO challenge. OA also attenuated NLRP3 inflammasome activation in activated microglia during the acute phase. In addition, daily administration of OA for 7 days starting from either immediately after reperfusion or 1 day after reperfusion significantly improved functional neurological deficits and attenuated brain tissue loss up to 21 days after the tMCAO challenge; these findings supported therapeutic effects of OA against ischemic stroke-induced chronic brain injury. Together, these findings showed that OA exerted neuroprotective effects against both acute and chronic brain injuries after tMCAO challenge, suggesting that OA is a potential therapeutic agent to treat ischemic stroke.

Pretreatment with GPR88 Agonist Attenuates Postischemic Brain Injury in a Stroke Mouse Model (GPR88 효현제의 전처리에 의한 뇌졸중후 뇌손상 감소효과 연구)

  • Lee, Seo-Yeon;Park, Jung Hwa;Kim, Min Jae;Choi, Byung Tae;Shin, Hwa Kyoung
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.939-946
    • /
    • 2020
  • Stroke is one of the leading causes of neurological disability worldwide and stroke patients exhibit a range of motor, cognitive, and psychiatric impairments. GPR88 is an orphan G protein-coupled receptor (GPCR) that is highly expressed in striatal medium spiny neurons; its deletion results in poor motor coordination and motor learning. There are currently no studies on the involvement of GPR88 in stroke or in post-stroke brain function recovery. In this study, we found a decrease in GPR88 protein and mRNA expression levels in an ischemic mouse model using Western blot and real-time PCR, respectively. In addition, we observed that, among the three types of cells derived from the brain (brain microvascular endothelial cells, BV2 microglial cells, and HT22 hippocampal neuronal cells), the expression of GPR88 was highest in HT22 neuronal cells, and that GPR88 expression was downregulated in HT22 cells under oxygen-glucose deprivation (OGD) conditions. Moreover, pretreatment with RTI- 13951-33 (10 mg/kg), a brain-penetrant GPR88 agonist, ameliorated brain injury following ischemia, as evidenced by improvements in infarct volume, vestibular-motor function, and neurological score. Collectively, our results suggest that GPR88 could be a potential drug target for the treatment of central nervous system (CNS) diseases, including ischemic stroke.