• 제목/요약/키워드: Mouse Embryonic stem cells

검색결과 182건 처리시간 0.02초

Formation of Functional Cardiomyocytes Derived from Mouse Embryonic Stem Cells

  • 신현아;김은영;이영재;이금실;조황윤;박세필;임진호
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2003년도 학술발표대회 발표논문초록집
    • /
    • pp.76-76
    • /
    • 2003
  • Pluripotent embryonic stem cells can differentiate into beating cardiomyocytes with proper culture conditions and stimulants via embryo-like aggregates. We describe here the use of mouse embryonic stem (mES03) cells as a reproducible differentiation system for cardiomyocyte. mES03 cells growing in colonies were dissociated and allowed to re-aggregated in suspension [embryoid body (EB) formation〕. To induce cardiomyocytic differentiation, cells were exposed to 0.75% dimethyl sulfoxide (DMSO) during EB formation for 4 days and then another 4 days without DMSO (4+/4-). Thus treated EB was plated onto gelatin-coated dishes for differentiation. Spontaneously contracting colonies which appeared in approximately 4~5 days upon differentiation were mechanically dissected, enzymatically dispersed, plated onto coverslips, and then incubated for another 48~72 hrs. By RT-PCR, robust expression of cardiac myosin heavy chain $\alpha$, cardiac muscle heavy polypeptide 7 $\beta$($\beta$-MHC), cardiac transcription factor GATA4, and skeletal muscle-specific $\alpha$$_1$-subunit of the L-type calcium channel ($\alpha$$_1$CaC $h_{sm}$ ) were detected as early as 8 days after EB formation, but message of cardiac muscle-specific $\alpha$$_1$-subunit of the L-type calcium channel ($\alpha$$_1$CaCh) were reveled at a low level. In contrast, expression of myosin light chain (MLC-2V) and atrial natriuretic factor (ANF) were not detected during EB formation for 8 days. However, a strong expression of the atrial-specific ANF gene was expressed from day 8 onward, which were remained constant in EB. (cardiac specialization and terminal differentiation stage). Electrophysiological examination of spontaneously contracting cells showed ventricle-like action potential 17 days after the EB formation. This study indicates that mES03 cell-derived cardiomyocytes via 4+/4- protocol displayed biochemical and electrophysiological properties of subpopulation of cardiomyocytes.

  • PDF

Functional Cardiomyocytes Formation Derived from Parthenogenetic Mouse Embryonic Stem Cells

  • Sin Hyeon-A;Kim Eun-Yeong;Lee Geum-Sil;Park Eun-Mi;Park Se-Pil;Im Jin-Ho
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2002년도 춘계학술발표대회 발표논문초록집
    • /
    • pp.20-20
    • /
    • 2002
  • This study was to establish the use of parthenogenetic mouse ES (P-mES02) cells as a reproducible differentiation system for mouse cardiomyocytes. To induce differentiation, P-mES02 cells were dispersed by dissociation and the formation of ES cell aggregates in differentiation medium. After 7 days in differentiation culture, the embryoid bodies (EBs) were plated onto gelatin-coated dish. Cultures were observed daily using an inverted light microscope to determine the day of contraction onset and total duration of continuous contractile activity for each contracting focus. (omitted)

  • PDF

Novel Function of Sprouty4 as a Regulator of Stemness and Differentiation of Embryonic Stem Cells

  • Lee, Jae-Young;Park, Sunghyun;Kim, Kwang-Soo;Ko, Jeong-Jae;Lee, Soohong;Kim, Keun Pil;Park, Kyung-Soon
    • 한국발생생물학회지:발생과생식
    • /
    • 제20권2호
    • /
    • pp.149-155
    • /
    • 2016
  • Sprouty (Spry) genes encode inhibitors of the receptor tyrosine kinase signaling cascade, which plays important roles in stem cells. However, the role of Spry4 in the stemness of embryonic stem cells has not been fully elucidated. Here, we used mouse embryonic stem cells (mESCs) as a model system to investigate the role of Spry4 in the stem cells. Suppression of Spry4 expression results in the decreases of cell proliferation, EB formation and stemness marker expression, suggesting that Spry4 activity is associated with stemness of mESCs. Teratoma assay showed that the cartilage maturation was facilitated in Spry4 knocked down mESCs. Our results suggest that Spry4 is an important regulator of the stemness and differentiation of mESCs.

Homogeneity of XEN Cells Is Critical for Generation of Chemically Induced Pluripotent Stem Cells

  • Dahee Jeong;Yukyeong Lee;Seung-Won Lee;Seokbeom Ham;Minseong Lee;Na Young Choi;Guangming Wu;Hans R. Scholer;Kinarm Ko
    • Molecules and Cells
    • /
    • 제46권4호
    • /
    • pp.209-218
    • /
    • 2023
  • In induced pluripotent stem cells (iPSCs), pluripotency is induced artificially by introducing the transcription factors Oct4, Sox2, Klf4, and c-Myc. When a transgene is introduced using a viral vector, the transgene may be integrated into the host genome and cause a mutation and cancer. No integration occurs when an episomal vector is used, but this method has a limitation in that remnants of the virus or vector remain in the cell, which limits the use of such iPSCs in therapeutic applications. Chemical reprogramming, which relies on treatment with small-molecule compounds to induce pluripotency, can overcome this problem. In this method, reprogramming is induced according to the gene expression pattern of extra-embryonic endoderm (XEN) cells, which are used as an intermediate stage in pluripotency induction. Therefore, iPSCs can be induced only from established XEN cells. We induced XEN cells using small molecules that modulate a signaling pathway and affect epigenetic modifications, and devised a culture method which can produce homogeneous XEN cells. At least 4 passages were required to establish morphologically homogeneous chemically induced XEN (CiXEN) cells, whose properties were similar to those of XEN cells, as revealed through cellular and molecular characterization. Chemically iPSCs derived from CiXEN cells showed characteristics similar to those of mouse embryonic stem cells. Our results show that the homogeneity of CiXEN cells is critical for the efficient induction of pluripotency by chemicals.

Translationally controlled tumor protein (TCTP) downregulates Oct4 expression in mouse pluripotent cells

  • Cheng, Xiang;Li, Junhua;Deng, Jie;Li, Zhenzhen;Meng, Shuyan;Wang, Huayan
    • BMB Reports
    • /
    • 제45권1호
    • /
    • pp.20-25
    • /
    • 2012
  • The present study aimed to investigate the function of translationally controlled tumor protein (TCTP) in the regulation of Oct4 in mouse embryonic carcinoma P19 cells and mouse J1 embryonic stem (ES) cells. The mRNA level of endogenous TCTP in somatic cells was 2-4 folds higher than that in pluripotent P19 and J1 ES cells. Overexpression of TCTP in mouse pluripotent cells not only reduced the level of Oct4 transcription, but also decreased the pluripotency of stem cells. The N-terminal end of TCTP (amino acids 1-60) played an important role in suppressing the Oct4 promoter. Moreover, overexpression of TCTP in P19 cells suppressed the Oct4 promoter activity in a dose- and a time-dependent manner. In addition, knockdown of TCTP by small interfering RNA increased the expression of Oct4. Our study indicates that TCTP downregulates the Oct4 expression by binding the Sf1 site of Oct4 promoter in mouse pluripotent cells.

Effects of Feeder Cell Types on Culture of Mouse Embryonic Stem Cell In Vitro

  • Park, Yun-Gwi;Lee, Seung-Eun;Kim, Eun-Young;Hyun, Hyuk;Shin, Min-Young;Son, Yeo-Jin;Kim, Su-Young;Park, Se-Pill
    • 한국발생생물학회지:발생과생식
    • /
    • 제19권3호
    • /
    • pp.119-126
    • /
    • 2015
  • The suitable feeder cell layer is important for culture of embryonic stem (ES) cells. In this study, we investigated the effect of two kinds of the feeder cell, MEF cells and STO cells, layer to mouse ES (mES) cell culture for maintenance of stemness. We compare the colony formations, alkaline phosphatase (AP) activities, expression of pluripotency marker genes and proteins of D3 cell colonies cultured on MEF feeder cell layer (D3/MEF) or STO cell layers (D3/STO) compared to feeder free condition (D3/-) as a control group. Although there were no differences to colony formations and AP activities, interestingly, the transcripts level of pluripotency marker genes, Pou5f1 and Nanog were highly expressed in D3/MEF (79 and 93) than D3/STO (61and 77) or D3/- (65 and 81). Also, pluripotency marker proteins, NANOG and SOX-2, were more synthesized in D3/MEF ($72.8{\pm}7.69$ and $81.2{\pm}3.56$) than D3/STO ($32.0{\pm}4.30$ and $56.0{\pm}4.90$) or D3/- ($55.0{\pm}4.64$ and $62.0{\pm}6.20$). These results suggest that MEF feeder cell layer is more suitable to mES cell culture.

Ganglioside GT1b Mediates Neuronal Differentiation of Mouse Embryonic Stem Cells

  • Lee, So-Dam;Jin, Jung-Woo;Choi, Jin;Choo, Young-Kug
    • 한국발생생물학회지:발생과생식
    • /
    • 제13권3호
    • /
    • pp.155-161
    • /
    • 2009
  • It has been reported that ganglioside GT1b is expressed during neuronal cell differentiation from undifferentiated mouse embryonic stem cells (mESCs), which suggests that ganglioside GT1b has a direct effect on neuronal cell differentiation. Therefore, this study was conducted to evaluate the effect of exogenous addition of ganglioside GT1b to an in vitro model of neuronal cell differentiation from undifferentiated mESCs. The results revealed that a significant increase in the expression of ganglioside GT1b occurred during neuronal differentiation of undifferentiated mESCs. Next, we evaluated the effect of retinoic acid (RA) on GT1b-treated undifferentiated mESCs, which was found to lead to increased neuronal differentiation. Taken together, the results of this study suggest that ganglioside GT1b plays a crucial role in neuronal differentiation of mESCs.

  • PDF

Parthenogenetic Mouse Embryonic Stem (mES) Cells Have Similar Characteristics to In Vitro Fertilization mES Cells

  • Lee Geum-Sil;Kim Eun-Yeong;Min Hyeon-Jeong;Park Se-Pil;Jeong Gil-Saeng;Im Jin-Ho
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2002년도 춘계학술발표대회 발표논문초록집
    • /
    • pp.83-83
    • /
    • 2002
  • This study was to compare the characteristics of parthenogenetic mES (P-mES) cells and in vitro fertilization mES cells. Mouse oocytes were recovered from superovulated 4wks hybrid F1 (C57BL/6xCBA/N) female mice. The oocytes were treated with 7% ethanol for 5 min and 5 ㎍/㎖ cytochalasin-B for 4 h. For IVF, the oocytes were inseminated with epididymal sperm of hybrid Fl male mice (1×10/sup 6//㎖). IVF and parthenogenetic embryos were cultured in M16 medium for 4 days. Cell number count in blastocysts was carried out differential labelling using propidium iodide (red) and bisbenzimide(blue). (omitted)

  • PDF

miRNA-222 Modulates Differentiation of Mouse Embryonic Stem Cells

  • Ahn, Hee-Jin;Jung, Jee-Eun;Park, Kyung-Soon
    • 한국발생생물학회지:발생과생식
    • /
    • 제15권4호
    • /
    • pp.331-338
    • /
    • 2011
  • MicroRNAs (miRNAs) function as a key regulator of diverse cellular functions. To find out novel miRNAs that promote the differentiation of mouse embryonic stem cells (mESCs), we compared the miRNAs expression profiles of mESCs under self-renewal vs. differentiation states. We noticed that miR-222 was highly expressed during the differentiation of mESCs. Quantitative RT-PCR analysis revealed that expression of miR-222 was up-regulated during the embryonic bodies formation and retinoic acid -dependent differentiation. When miR-222 was suppressed by antogomiR-222, the differentiation of mESCs was delayed compared to control. Self-renewal marker expression or cell proliferation was not affected but the expression of lineage specific marker was suppressed by the treatment of miR-222 inhibitor during the differentiation of mESCs. Taken together, these results suggest that miR-222 functions to promote the differentiation of mESCs by regulating expression of differentiation related genes.

Establishment of Mouse Pluripotent Stem Cells Generated from Primordial Germ Cells

  • Shim, Sang-Woo;Song, Sang-Jin;Hosup Shim;Lee, Bo-Yon;Huh, Choo-Yup;Hyuk Song;Chung, Kil-Saeng;Lee, Hoon-Taek
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2004년도 춘계학술발표대회
    • /
    • pp.276-276
    • /
    • 2004
  • Pluripotent stem cells have been generated from two embryonic sources. ES cells are generated from ICM of blastocyst stage embryos, and embryonic germ (EG) cells are generated from primordial germ cells (PGCs). Both ES and EG cells are pluripotent and present important characteristics such as high levels of alkaline phosphatase (AP) activity, multi-cellular colony formation, normal and stable karyotypes, continuously passaging ability, and the capability of differentiation into all three embryonic germ layers. (omitted)

  • PDF