• 제목/요약/키워드: Mouse ES cell

검색결과 80건 처리시간 0.023초

Mouse Embryonic Stem Cell에서 Tetracycline-Inducible System(Tet-on System)을 이용한 Corynebacterium diphtheria Toxin-A유전자의 발현 조절 (Controlling the Gene Expression of Corynebacterium diphtheria Toxin-A Using the Tet-On System in Mouse Embryonic Stem Cells.)

  • 박재균;임수빈;송지환
    • 한국미생물·생명공학회지
    • /
    • 제32권1호
    • /
    • pp.11-15
    • /
    • 2004
  • 본 연구에서는 C. diphtheriae toxin-A(DTA)를 합성하는 유전자를 tetracycline derivative인 doxycycline에 의해 발현이 유도되는 plasmid('Tet-on' system)에 삽입시켜, 이를 mouse ES cell에 도입시켰으며, 이렇게 제작된 mouse ES cell이 doxycycline의 처리 농도에 따라 mouse ES cell내의 DTA의 발현이 유도되어 이 결과 세포 사별(apoptosis)을 유발시키는 것을 MTT assay를 통해 확인하였다.

Feeder Independent Culture of Mouse Embryonic Stem Cells

  • Kim, Myoung Ok;Ryoo, Zae Young
    • Reproductive and Developmental Biology
    • /
    • 제36권4호
    • /
    • pp.291-294
    • /
    • 2012
  • Embryonic stem cell classically cultured on feeder layer with FBS contained ES medium. Feeder-free mouse ES cell culture systems are essential to avoid the possible contamination of nonES cells. First we determined the difference between ES cell and MEF by Oct4 population. We demonstrate to culture and to induce differentiation on feeder free condition using a commercially available mouse ES cell lines.

Differentiated Human Embryonic Stem Cells Enhance the In vitro and In vivo Developmental Potential of Mouse Preimplantation Embryos

  • Kim, Eun-Young;Lee, Keum-Sil;Park, Se-Pill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권9호
    • /
    • pp.1152-1158
    • /
    • 2010
  • In differentiating human embryonic stem (d-hES) cells there are a number of types of cells which may secrete various nutrients and helpful materials for pre-implantation embryonic development. This study examined whether the d-hES could function as a feeder cell in vitro to support mouse embryonic development. By RT-PCR analysis, the d-hES cells revealed high expression of three germ-layered differentiation markers while having markedly reduced expression of stem cell markers. Also, in d-hES cells, LIF expression in embryo implantation-related material was confirmed at a similar level to undifferentiated ES cells. When mouse 2PN embryos were cultured in control M16 medium, co-culture control CR1aa medium or co-cultured with d-hES cells, their blastocyst development rate at embryonic day 4 (83.9%) were significantly better in the d-hES cell group than in the CR1aa group (66.0%), while not better than in the M16 group (90.7%)(p<0.05). However, at embryonic days 5 and 6, embryo hatching and hatched-out rates of the dhES cell group (53.6 and 48.2%, respectively) were superior to those of the M16 group (40.7 and 40.7%, respectively). At embryonic day 4, blastocysts of the d-hES cell group were transferred into pseudo-pregnant recipients, and pregnancy rate (75.0%) was very high compared to the other groups (M16, 57.1%; CR1aa, 37.5%). In addition, embryo implantation (55.9%) and live fetus rate (38.2%) of the d-hES cell group were also better than those of the other groups (M16, 36.7 and 18.3%, respectively; CR1aa, 23.2 and 8.7%, respectively). These results demonstrated that d-hES cells can be used as a feeder cell for enhancing in vitro and in vivo developmental potential of mouse pre-implantation embryos.

Isolation and Characterization of Parthenogenetic Embryonic Stem (pES) Cells Containing Genetic Background of the Kunming Mouse Strain

  • Yu, Shu-Min;Yan, Xing-Rong;Chen, Dong-Mei;Cheng, Xiang;Dou, Zhong-Ying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권1호
    • /
    • pp.37-44
    • /
    • 2011
  • Parthenogenetic embryonic stem (pES) cells could provide a valuable model for research into genomic imprinting and X-linked diseases. In this study, pES cell lines were established from oocytes of hybrid offspring of Kunming and 129/Sv mice, and pluripotency of pES cells was evaluated. The pES cells maintained in the undifferentiated state for more than 50 passages had normal karyotypes with XX sex chromosomes and exhibited high activities of alkaline phosphatase (AKP) and telomerase. Meanwhile, these cells expressed ES cell molecular markers SSEA-1, Oct-4, Nanog, and GDF3 but not SSEA-3 detected by immunohistochemistry and RT-PCR. The pES cells could be differentiated into various types of cells from three germ layers in vitro by analysis of embryoid bodies (EBs) with immunohistochemistry and RT-PCR, and in vivo by observation of pES cell-derived teratoma sections. Therefore, the established pES cell lines contained all features of mouse ES cells. This work provides a new strategy for isolating pES cells from Kunming mice, and the pES cell lines could be applied as the cell model in research into genomic imprinting and epigenetic regulation of Kunming mice.

TT2 Embryonic Stem Cell 을 이용한 Chimeric Mouse 생산에 있어서 간단한 공배양방법 (Simple Methods for Production of Chimeric Mouse by Coculture with TT2 Embryonic Stem Cells)

  • Cho, Y.Y.;Moon, S.J.;Kang, M.J.
    • 한국가축번식학회지
    • /
    • 제24권4호
    • /
    • pp.451-455
    • /
    • 2000
  • 본 연구는 TT2 embryonic stem(ES) cell을 이용하여 chimeric mouse를 생산하는데 있어서 더욱 간편한 공배양방법 개발하기 위하여 수행되었다. 유전자 적중 생쥐의 개발은 유전자의 기능을 연구하는데 매우 중요한 수단으로 이용되고 있다. 이러한 생쥐의 개발에 있어서 chimeric mouse를 생산하는 과정은 ES cell의 종류의 차이는 있지만 주로 배반포기의 수정란에 ES cell을 주입하고 있다. 이 기술은 고가의 미세조작장치 뿐만 아니라 고도의 기술을 요하고 있다. 그러므로 본 연구에서는 TT2 ES cell를 8세포기 수정란과 공배양할 때의 필요로 하는 적절한 ES cell의 수를 검증함으로써 chimeric mouse의 생산 효율을 높일 수 있었다. 각각 0.5$\times$$10^{6}$, 1$\times$$10^{6}$과 2$\times$$10^{6}$$m\ell$의 ES cell을 8 세포기의 수정란과 공배양하였을때 0.5$\times$$10^{6}$과 1$\times$$10^{6}$$m\ell$에서 높은 배반포기로의 발달율을 나타내었다. 또한 가임신된 생쥐에 이들 배반포기를 이식한 결과 1$\times$$10^{6}$$m\ell$에서 높은 chimeric mouse 생산 효율을 나타내었다. 이러한 결과는 적절한 수의 ES cell과 수정란을 공배양함으로써 매우 간단하게 효율 좋은 chimeric mouse을 얻을 수 있음을 제시하고 있다.

  • PDF

The Question of Abnormalities in Mouse Clones and ntES Cells

  • Wakayama, Teruhiko
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.7-8
    • /
    • 2003
  • Since it was first reported in 1997, somatic cell cloning has been demonstrated in several other mammalian species. On the mouse, it can be cloned from embryonic stem (ES) cells, fetus-derived cells, and adult-derived cells, both male and female. While cloning efficiencies range from 0 to 20%, rates of just 1-2% are typical (i.e. one or two live offspring per one hundred initial embryos). Recently, abnormalities in mice cloned from somatic cells have been reported, such as abnormal gene expression in embryo (Boiani et al., 2001, Bortvin et al., 2003), abnormal placenta (Wakayama and Yanagimachi 1999), obesity (Tamashiro et ai, 2000, 2002) or early death (Ogonuki et al., 2002). Such abnormalities notwithstanding, success in generating cloned offspring has opened new avenues of investigation and provides a valuable tool that basic research scientists have employed to study complex processes such as genomic reprogramming, imprinting and embryonic development. On the other hand, mouse ES cell lines can also be generated from adult somatic cells via nuclear transfer. These 'ntES cells' are capable of differentiation into an extensive variety of cell types in vitro, as well assperm and oocytes in vivo. Interestingly, the establish rate of ntES cell line from cloned blastocyst is much higher than the success rate of cloned mouse. It is also possible to make cloned mice from ntES cell nuclei as donor, but this serial nuclear transfer method could not improved the cloning efficiency. Might be ntES cell has both character between ES cell and somatic cell. A number of potential agricultural and clinical applications are also are being explored, including the reproductive cloning of farm animals and therapeutic cloning for human cell, tissue, and organ replacement. This talk seeks to describe both the relationship between nucleus donor cell type and cloning success rate, and methods for establishing ntES cell lines. (중략)

  • PDF

Fate of Parthenogenetic Mouse Embryos Aggregated with ES Cells

  • Kim, Ji-Yeon;Lee, Hoon-Taek;Chung, Kil-Saeng
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2003년도 학술발표대회 발표논문초록집
    • /
    • pp.30-30
    • /
    • 2003
  • The present study examined the developmental ability of embryonic stem (ES) cells aggregated with mouse parthenogenetic embryos. Oocytes obtained from superovulated female mouse (BCF1) were treated with 7% ethanol and 5 $\mu\textrm{g}$/$m\ell$ cytochalasin B (CB) for producing pathenotes and in vitro fertilized with fresh sperm for producing normal embryos. The reporter vector (pNeoEGFP) were inserted into ES cells (129S4/svJae) by electroporation. At the 8-cell stage, in vitro fertilized embryos and pathenotes, which the zona pellucida was removed, were co-cultured with 5~10 ES cells for 4 hr. After in vitro fertilized embryos and parthenotes aggregated with ES cells were incubated to blastocyst stage, and these blastocysts transferred into the uterus of pseudopregnant recipients. The fertilized embryos aggregated with ES cells were successfully developed to offspring, but the parthenotes aggregated with ES cells failed to develop offsprings. However, genomic DNA of ES cells was detected in the pathenogenetic fetus by polymerase chain reactions at 15 day post gestation. In this study, results indicated that parthenotes aggregated with ES cells showed possible development to fetus. In the future, this method may help to produce transgenic chimera from parthenotes aggregated with ES cells.

  • PDF

토끼수정란으로부터 배아세포의 분리 (Establishment of Embryonic Stem Cells Derived from Rabbit Embryos)

  • 강회성;임경순;최화식;신영수;진동일
    • 한국가축번식학회지
    • /
    • 제25권3호
    • /
    • pp.219-225
    • /
    • 2001
  • 토끼 배아세포(Embryonic Stem Cell)를 분리하기 위해 토끼 1-cell embryo를 채란하여 in vitro에서 blastocyst까지 배양한 후 mouse embryonic fibroblasts(MEF), rabbit embryonic fibroblasts(REF) 및 STO cell expressing Leukemia Inhibition Factor gene(SNL) feeder cell과 공배양하였다. 외관상 충실한 토끼 배아세포 8 개를 확보하였고 분리된 토끼 ES cell의 모양은 주위에 분화된 세포가 없는 전형적인 colony모양으로 성장하고 액체질소에 동결보존 및 3∼5차례의 계대배양 후에도 이러한 모양은 계속 유지되었다. 충분히 자란 dish를 1 : 2로 계대배양을 한 후 다시 confluent하게 자라는 데에 걸리는 시간(doubling time)은 빠른 경우 84시간으로 나타났다. 분리 된 토끼 ES cell은 gelatin이 coating되지 않은 culture dish에 이식 배양하였을 때 부유상태로 증식하면서 내부에 강이 생기고 외배엽과 내배엽이 형성하는 전형적인 Embryoid body 모양을 나타내어 분리된 ES cell이 미분화상태의 stem cell임이 확인되었다. 본 연구를 통해 토끼에서의 수정란 배양을 통해 토끼 배아세포를 분리하여 특성을 규명하였다 현재까지의 연구성과로는 토끼 수정란의 배양기술을 완벽하게 개발했다는 점과 토끼에서 ES cell을 분리하여 앞으로 유전자 조작의 가능성을 열어 놓은 것이다. 토끼 ES cell system이 완벽히 확립되도록 분리된 ES cell에 대한 미분화상태의 연구 및 미분화상태를 식별할 수 있는 marker등에 대한 연구에 이용될 것이고 복제토끼 및 형질전환토끼의 생산 등을 위한 연구에 이용될 수 있다.

  • PDF

Embryonic Stem Cell and Nuclear Transfer

  • 임정묵
    • 한국수정란이식학회:학술대회논문집
    • /
    • 한국수정란이식학회 2002년도 춘계학술세미나 및 워크숍
    • /
    • pp.19-25
    • /
    • 2002
  • Researches on manipulation pluripotent stem cells derived from blastocysts or promordial germ cells (PGCs) have a great advantages for developing innovative technologies in various fields of life science including medicine, pharmaceutics, and biotechnology. Since the first isolation in the mouse embryos, stem cells or stem cell-like colonies have been continuously established in the mouse of different strains, cattle, pig, rabbit, and human. In the animal species, stem cell biology is important for developing transgenic technology including disease model animal and bioreactor production. ES cell can be isolated from the inner cell mass of blastocysts by either mechanical operation or immunosurgery. So, mass production of blastocyst is a prerequisite factor for successful undertaking ES cell manipulation. In the case of animal ES cell research, various protocol of gamete biotechnology can be applied for improving the efficiency of stem cell research. Somatic cell nuclear transfer technique can be applied to researches on animal ES cells, since it is powerful tool for producing clone embryos containing genes of interest. In this presentation, a brief review was made for explaining how somatic cell nuclear transfer technology could contribute to improving stem cell manipulation technology.

  • PDF

Generation of Embryonic Stem Cell-derived Transgenic Mice by using Tetraploid Complementation

  • Park, Sun-Mi;Song, Sang-Jin;Choi, Ho-Jun;Uhm, Sang-Jun;Cho, Ssang-Goo;Lee, Hoon-Taek
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.121-121
    • /
    • 2003
  • The standard protocol for the production of transgenic mouse from ES-injected embryo has to process via chimera producing and several times breeding steps, In contrast, tetraploid-ES cell complementation method allows the immediate generation of targeted murine mutants from genetically modified ES cell clones. The advantage of this advanced technique is a simple and efficient without chimeric intermediates. Recently, this method has been significantly improved through the discovery that ES cells derived from hybrid strains support the development of viable ES mice more efficiently than inbred ES cells do. Therefore, the objective of this study was to generate transgenic mice overexpressing human resistin gene by using tetrapioid-ES cell complementation method. Human resistin gene was amplified from human fetal liver cDNA library by PCR and cloned into pCR 2.1 TOPO T-vector and constructed in pCMV-Tag4C vector. Human resistin mammalian expression plasmid was transfected into D3-GL ES cells by lipofectamine 2000, and then after 8~10 days of transfection, the human resistin-expressing cells were selected with G418. In order to produce tetraploid embryos, blastomeres of diploid embryos at the two-cell stage were fused with two times of electric pulse using 60 V 30 $\mu$sec. (fusion rate : 93.5%) and cultured upto the blastocyst stage (development rate : 94.6%). The 15~20 previously G418-selected ES cells were injected into tetraploid blastocysts, and then transferred into the uterus of E2.5d pseudopregnant recipient mice. To investigate the gestation progress, two El9.5d fetus were recovered by Casarean section and one fetus was confirmed to contain human resistin gene by genomic DNA-PCR. Therefore, this finding demonstrates that tetraploid-ES mouse technology can be considered as a useful tool to produce transgenic mouse for the rapid analysis of gene function in vivo.

  • PDF