• Title/Summary/Keyword: Mouse Brain

Search Result 607, Processing Time 0.02 seconds

DNA Microarray Analysis of Gene Expression Profiles in Aging process of Mouse Brain

  • Lee Mi-Suk;Heo Jee-In;Kim Jae-Bong;Park Jae-Bong;Lee Jae-Yang;Han Jeong-A.;Kim Jong-Il
    • Genomics & Informatics
    • /
    • v.4 no.1
    • /
    • pp.23-32
    • /
    • 2006
  • In order to investigate the molecular basis of the aging process in brain, we have employed high-density oligonucleotide microarrays providing data on 10,108 gene clusters to define transcriptional patterns in three brain regions, cerebral cortex, cerebellum, and hippocampus. Comparison of the expression patterns between young (6-week-old) and aged (17-month-old) C57BL/6 male micerevealed that about ten percent (1098) of the genes showed a significant change in the expression level in at least one of the three tissues. Among them, 23 genes were upregulated and 62 genes were downregulated in all three tissues of the old mice. The number of genes upregulated exclusively in hippocampus (337) was much larger compared to other tissues. Gene ontology-based analysis showed the genes related with signal transduction or molecular transports are more likely to be upregulated than downregulated in the aging process of hippocampus. These data may provide some useful means for elucidating the molecular aspect of aging in hippocampus and other regions in brain.

The Antioxidant Effects of ONDAMTANG on the Brain Tissue of Mouse (온담탕(溫膽湯)이 뇌조직(腦組織)의 산화작용(酸化作用)에 미치는 영향(影響))

  • Jung In-Chul;Lee Sang-Ryong
    • Journal of Oriental Neuropsychiatry
    • /
    • v.8 no.2
    • /
    • pp.51-62
    • /
    • 1997
  • This experiment was done to investigate the antioxidant effect of Ondamtang(ODT) on brain tissues of rats. The experimental groups were divided into three groups and treated as follows for a fifteen days ; Negative control group(NC), Vitamin E admistrated group(PC), ODT administrated Group(ODT). After the extracting microsome from brain of rats, those were measured the amounts of Malondiadehyde and Hydrogen peroxide, then activities of antioxidant enzymes like Superoxide dismutase, Catalase and NADPH-cytochrome P-450 reductadse. The results were as follows; 1. In TBA reaction to measure the amount of MDA, oxidant material of brain tissue of rats, the group treated by ODT showed significant decrease. 2. In the formation of Hydrogen peroxide, the group treated by ODT showed no change in comparison with normal group. 3. The activity of SOD in the group treated by ODT showed a little increase in comparison with normal group. 4. The activity of Catalase was increased significantly in the group treated by ODT than normal group. 5. The activity of NADPH-cytochrome P-450 reductase in the group treated by ODT showed a little increase in comparison with normal group. According to the above results, it is suggested that Ondamtang(ODT) has some antioxidant effects on tissues of brain.

  • PDF

DNA Methylation in Brain and Liver Tissues of Mice Infected with Scrapie Agent (스크래피에 감염된 마우스의 뇌 및 간조직에서의 DNA Methylation)

  • Choi, E.K.;Uyeno, S.;Ono, T.;Carp, R.I.;Kim, Y.S.
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.2
    • /
    • pp.183-192
    • /
    • 1998
  • DNA methylation degree in the several murine brain and liver genes of different ages and after scrapie infection have been examined by using methylation-sensitive restriction endonuclease digestion. We found that the methylation of c-fos and c-myc in the brain and liver was increased during the late fetal to one month postnatal developmental periods. However, those of the SGP-2, $S100{\beta}$, APP950, PrP, and APLP1 genes were decreased at the same periods. The comparison of the DNA methylation patterns between scrapie infected brains and controls demonstrated there is no significant difference in methylation degree of scrapie-infected brains. These observations indicate that DNA methylation might be importantly related to the aging process. The scrapie-infected murine brain was not significantly developed more senescent than the same age-controls did.

  • PDF

Cytosolic domain regulates the calcium sensitivity and surface expression of BEST1 channels in the HEK293 cells

  • Kwon Woo Kim;Junmo Hwang;Dong-Hyun Kim;Hyungju Park;Hyun-Ho Lim
    • BMB Reports
    • /
    • v.56 no.3
    • /
    • pp.172-177
    • /
    • 2023
  • BEST family is a class of Ca2+-activated Cl- channels evolutionary well conserved from bacteria to human. The human BEST paralogs (BEST1-BEST4) share significant amino acid sequence homology in the N-terminal region, which forms the transmembrane helicases and contains the direct calcium-binding site, Ca2+-clasp. But the cytosolic C-terminal region is less conserved in the paralogs. Interestingly, this domain-specific sequence conservation is also found in the BEST1 orthologs. However, the functional role of the C-terminal region in the BEST channels is still poorly understood. Thus, we aimed to understand the functional role of the C-terminal region in the human and mouse BEST1 channels by using electrophysiological recordings. We found that the calcium-dependent activation of BEST1 channels can be modulated by the C-terminal region. The C-terminal deletion hBEST1 reduced the Ca2+-dependent current activation and the hBEST1-mBEST1 chimera showed a significantly reduced calcium sensitivity to hBEST1 in the HEK293 cells. And the C-terminal domain could regulate cellular expression and plasma membrane targeting of BEST1 channels. Our results can provide a basis for understanding the C-terminal roles in the structure-function of BEST family proteins.

Pretreatment with GPR88 Agonist Attenuates Postischemic Brain Injury in a Stroke Mouse Model (GPR88 효현제의 전처리에 의한 뇌졸중후 뇌손상 감소효과 연구)

  • Lee, Seo-Yeon;Park, Jung Hwa;Kim, Min Jae;Choi, Byung Tae;Shin, Hwa Kyoung
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.939-946
    • /
    • 2020
  • Stroke is one of the leading causes of neurological disability worldwide and stroke patients exhibit a range of motor, cognitive, and psychiatric impairments. GPR88 is an orphan G protein-coupled receptor (GPCR) that is highly expressed in striatal medium spiny neurons; its deletion results in poor motor coordination and motor learning. There are currently no studies on the involvement of GPR88 in stroke or in post-stroke brain function recovery. In this study, we found a decrease in GPR88 protein and mRNA expression levels in an ischemic mouse model using Western blot and real-time PCR, respectively. In addition, we observed that, among the three types of cells derived from the brain (brain microvascular endothelial cells, BV2 microglial cells, and HT22 hippocampal neuronal cells), the expression of GPR88 was highest in HT22 neuronal cells, and that GPR88 expression was downregulated in HT22 cells under oxygen-glucose deprivation (OGD) conditions. Moreover, pretreatment with RTI- 13951-33 (10 mg/kg), a brain-penetrant GPR88 agonist, ameliorated brain injury following ischemia, as evidenced by improvements in infarct volume, vestibular-motor function, and neurological score. Collectively, our results suggest that GPR88 could be a potential drug target for the treatment of central nervous system (CNS) diseases, including ischemic stroke.

Brain somatic mutations in MTOR leading to focal cortical dysplasia

  • Lim, Jae Seok;Lee, Jeong Ho
    • BMB Reports
    • /
    • v.49 no.2
    • /
    • pp.71-72
    • /
    • 2016
  • Focal cortical dysplasia type II (FCDII) is a focal malformation of the developing cerebral cortex and the major cause of intractable epilepsy. However, since the molecular genetic etiology of FCD has remained enigmatic, the effective therapeutic target for this condition has remained poorly understood. Our recent study on FCD utilizing various deep sequencing platforms identified somatic mutations in MTOR (existing as low as 1% allelic frequency) only in the affected brain tissues. We observed that these mutations induced hyperactivation of the mTOR kinase. In addition, focal cortical expression of mutant MTOR using in utero electroporation in mice, recapitulated the neuropathological features of FCDII, such as migration defect, cytomegalic neuron and spontaneous seizures. Furthermore, seizures and dysmorphic neurons were rescued by the administration of mTOR inhibitor, rapamycin. This study provides the first evidence that brain somatic activating mutations in MTOR cause FCD, and suggests the potential drug target for intractable epilepsy in FCD patients.

Protection by native edible plant extract MK-104 against kainate-induced neurotoxicity in mouse brain

  • Oh, Sang-Hee;Kim, Mee-Ree
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.04a
    • /
    • pp.109.2-110
    • /
    • 2003
  • The neuroprotective effect of solvent fraction of native edible plant MK-104 in the mice administered with kainate was evaluated using behavioral sign, neuronal injuries and biomarkers of oxidative stress. Mice, ICR male, were administered with the BFME through a gavage for 4 days consecutively, and on the 3rd day, kainate (450 mg/kg) was i.p. administered. The fraction(400 mg/kg) delayed the onset time of neurobehavioral change (p<0.01), reduced the severity of convulsion and lethality (p<0.05), and restored the level of GSH and lipid peroxidation in brain to control value. A similar protective action was also expressed by fraction-I (200 mg/kg), which showed a prominent protection against the neuronal damage in hippocampal CA1 and CA2 regions (p<0.01) caused by kainate injection. of TBARS value. Based on these results, BFME-I is suggested to contain a functional agent to prevent against oxidative stress in the brain of mice.

  • PDF

Overexpression of Mouse Nck Transforms Mouse Febroblast NIH3T3

  • Kim, Young H.;Han, Sun-Mi;Kim, Moon G.;Park, Dong-Eun;Park, Sang D.;Seong, Rho H.
    • Animal cells and systems
    • /
    • v.1 no.3
    • /
    • pp.521-526
    • /
    • 1997
  • We isolated a mouse nck cDNA from the thymus cDNA expression library. The cDNA encodes a 377 amino acid protein and displays 97% amino acid sequence identity to human oncogenic protein nck, which is composed almost exclusivelv of three src homology 3 (SH3) domains and one SH2 domain. The sequence analysis also showed that the isolated cDNA is the mouse counterpart of the human nck and different from the mouse grb4, which has been reported to be highly similar to the human nck and, therefore considered as a mouse nck, Northern blot analysis showed that the transcript of the gene was 1.8 kb and was highly expressed in the testis, thymus, and brain but moderately in the liver and lymph node. Western blot analysis showed that the size of the protein was about 47 kDa. Overexpression of the mouse Nck transformed a mouse fibroblast cell line, NIH3T3. The results clearly indicate that normal nck gene has transforming ability and provide an argument against a suggested possibility that the transforming ability of the human nck gene is due to a mutation(s) in the gene.

  • PDF

Effect of Sanghongbaekchul-san on Anti-metastatic and Immunopotentiating Activities (상홍백출산(桑紅白朮散)이 생쥐 대장암세포의 간전이억제와 면역활성화에 미치는 효과)

  • Oh, Se-Soon;Kang, Hee;Shim, Bum-Sang;Kim, Sung-Hoon;Choi, Seung-Hoon;Ahn, Kyoo-Seok
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.282-289
    • /
    • 2008
  • We evaluated the effect of SHBCS on adhesion and invasion of colon L5-26 adenocarcinoma cell line in vitro in vitro and experimental liver metastasis in vivo. SHBCS showed little inhibitory effect on colon 26-L5 cell proliferation. At the concentration of up to 500 mg/ml of SHBCS 80% of cells were viable. SHBCS showed no inhibitory effect on adhesion and invasion of colon 26-L5 cells, which were placed on matrigel. In a dose dependent manner, oral administration of SHBCS showed a significantly inhibitory effect on liver metastasis from colon 26-L5 injected mice. When mice were depleted of NK cells or macrophages before tumor inoculation, SHBCS significantly decreased liver metastasis fromf the tumor injected mice. Compared with the control mice, SHBCS increased the populations of macrophages and NK cells by 30%, 18%(10 mg/mouse, 50 mg/mouse) and 5%, 1% (10 mg/mouse, 50 mg/mouse) respectively. Compared with the control mice, SHBCS increased the populations of CD4 cells by 5%, 18% (10 mg/mouse, 50 mg/mouse) respectively. Spelenocytes from mice administerd with SHBCS were stimulated with LPS plus ConA, proliferation of splenocytes from mice administerd with SHBCS was 140%, 146%(10 mg/mouse, 50 mg/mouse) compared with th control mice. In conclusion, the present study suggests that SHBCS may have an inhibitory effect on liver metastasis through immunopotentiating activity which is associated with macrophages and NK cells.

Microarray Analysis of Differentially Expressed Genes in the Brains of Tubby Mice

  • Lee, Jeong-Ho;Kim, Chul-Hoon;Kim, Dong-Goo;Ahn, Young-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.2
    • /
    • pp.91-97
    • /
    • 2009
  • The tubby mouse is characterized by progressive retinal and cochlear degeneration and late-onset obesity. These phenotypes are caused by a loss-of-function mutation in the tub gene and are shared with several human syndromes, suggesting the importance of tubby protein in central nervous system (CNS) functioning. Although evidence suggests that tubby may act as a transcription factor mediating G-protein coupled receptor (GPCR) signaling, any downstream gene regulated by tubby has yet to be identified. To explore potential target genes of tubby with region-specific transcription patterns in the brain, we performed a microarray analysis using the cerebral cortex and hypothalamus of tubby mice. We also validated the changes of gene expression level observed with the microarray analysis using real-time RT-PCR. We found that expression of erythroid differentiation factor 1 (Erdrl) and caspase 1 (Casp1) increased, while p21-activated kinase 1 (Pak1) and cholecystokinin 2 receptor (Cck2r) expression decreased in the cerebral cortex of tubby mice. In the hypothalamic region, Casp 1 was up-regulated and $\mu$-crystallin (CRYM) was down-regulated. Based on the reported functions of the differentially expressed genes, these individual or grouped genes may account for the phenotype of tubby mice. We discussed how altered expression of genes in tubby mice might be understood as the underlying mechanism behind tubby phenotypes.