• Title/Summary/Keyword: Mountainous Watershed

Search Result 82, Processing Time 0.031 seconds

Characterizing the Spatial-temporal Distribution of Soil Moisture for Sulmachun Watershed Through a Continuous Monitoring (설마천 유역의 토양수분 장기 모니터링을 통한 토양수분 시공간 변화양상의 특성화)

  • Lee, Ga Young;Kim, Ki Hoon;Kim, Sang Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.209-214
    • /
    • 2004
  • Time Domain Reflectometry with multiplex system has been installed to configure the spatial and temporal characteristics of soil moisture in a mountainous hillslope. An intensive surveying was performed to build a refined digital elevation model and flow determination algorithms with inverse surveying have been applied to establish an efficient soil monitoring system. Steady state wetness index, quasi-dynamic wetness index and fully dynamic wetness index have been calculated. Continuous monitoring of soil moisture data were analyized with wetness indices. Limitations and hydrological interpretations of this approach have beer discussed.

  • PDF

A Study on the calculation of Effective Rainfall by the SCS Method Using a Triangular Irregular Network (TIN을 이용한 SCS법에 의한 유효강우량 산정에 관한 연구)

  • Jo, Hong-Je;Kim, Jeong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.4
    • /
    • pp.357-366
    • /
    • 1997
  • This paper presents a methodology for the calculation of effective rainfall by the SCS method using 3-dimensional digital elevation map and a Triangular Irregular Network module. The effective rainfall is calculated by taking into the increases of the runoff curve number(2%, 3%) due to the 10% increases of the slope of hillside, and the result indicate that the effective rainfall varies 5.0%∼12.0% with the storm events. It is demonstrated that in case of using the SCS method for the calculation of effective rainfall in the mountainous watershed with great elevation difference, the methodology taking into the slope of hillside is more viable.

  • PDF

Operation of Experimental Watershed in Mountainous Rivers of Yeongseo Region in 2009 (2009년 영서지역 산지하천 시험유역의 운영)

  • Kim, Sang-Ho;Min, Sang-Ki;Hwang, Sin-Bum
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1906-1910
    • /
    • 2010
  • 산지하천은 지형적인 특성상 만곡지점이 많이 발달되어 있기 때문에 홍수시에는 유속이 매우 빠르며 수위상승과 횡방향 수위 변동이 심하다. 이러한 산지하천의 흐름특성은 집중호우가 발생할 경우 급격한 홍수위 상승과 함께 하상세굴이 발생하게 된다. 특히 집중호우로 인해 산간지역 지면의 침식이나 하천의 세굴로 인해 토석류가 발생하게 되며, 이로 인해 하천 주변에서 많은 재해가 발생하게 된다. 따라서, 본 연구에서는 영서지역 산지하천에 해당하는 시험유역 운영을 통하여 집중호우시 하천의 만곡지점에서 수위상승과 하상세굴로 인한 토석류의 발생으로 극심한 피해를 주고 있는 문제들을 해결하기 위해 고품질의 신뢰성 있는 수리/수문 자료를 지속적으로 확보하고자 한다. 강우관측소와 수위관측소 등의 계측시스템을 설치하여 실시간 수문관측 자료의 전송 및 현장 조사를 통해 얻은 수리/수문 자료에 대하여 DB 자료를 구축하였다. 2009년에 유량측정을 실시한 속사천에 위치한 의풍포교 이외에 2010년에는 장평교, 백옥포교, 상안미 3개의 지점을 추가하여 측정을 실시하고자 한다. 이와 같은 수리/수문 자료의 수집은 유역의 수문특성에 대해 보다 정확한 규명과 관측된 자료를 바탕으로 한 수문순환모형의 개발을 위한 검정 및 검증자료로 활용될 것이다.

  • PDF

Application of the Modified CA-Markov Technique for Future Prediction of Forest Land Cover in a Mountainous Watershed (미래 산림식생변화 예측을 위한 개선된 CA-Markov 기법의 적용)

  • Park, Min-Ji;Park, Geun-Ae;Lee, Yong-Jun;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.61-68
    • /
    • 2010
  • 토지피복은 대부분의 수문 수질 모형의 중요한 매개변수로서, 수자원 변화 예측에 중요한 입력자료로 활용되고 있다. 본 연구에서는 개선된 CA (Cellular Automata)-Markov 기법을 이용하여 충주댐유역의 미래 산림식생변화에 대한 예측을 시도하였다. 예측과정으로 과거의 Landsat TM 영상 (1985, 1990, 1995, 2000)을 이용하여 기법의 정확도 검증 및 산림분포의 변화경향을 파악하고, Landsat 산림은 2000년과 2005년의 NOAA AVHRR NDVI값을 기준으로 침엽수림, 혼효림, 활엽수림의 3종으로 구분한 후, 이를 이용하여 2030년, 2060년, 2090년의 식생변화를 추정하는 방법을 제안하였다. 이 방법의 적용결과, 2000년과 비교하여 2090년의 활엽수림과 혼효림은 각각 14.3 %, 11.6 % 증가하였으며, 침엽수림은 24.9 % 감소하는 것으로 나타났다. 과거의 경향성에 의해 예측을 시도한 본 연구결과는 미래 토지피복 변화에 따른 수문 수질 영향 분석시 지표 조건의 불확실성을 줄이는데 활용될 수 있다고 판단된다.

A Basic Study on Disaster Mapping Techniques in Mountainous Watershed (산지유역 재해지도 작성 기법에 관한 기초 연구)

  • Lee, Hyun Chae;Jun, Kye Won;Oh, Chae Yeon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.179-179
    • /
    • 2017
  • 우리나라는 국토면적의 약 64%가 산지로 이루어져 있으며 동고서저의 지형을 이루고 있다. 강원도 영동지방의 경우는 고도가 높으며 경사가 급한 특징을 지니고 있으며 이러한 지형적 특징으로 태풍 및 집중호우 시, 산지재해에 취약할 수밖에 없다. 더욱이 최근, 기후변화로 인한 이상기후 현상에 의해 태풍 및 집중호우가 빈번해 산지재해의 발생빈도도 높아지고 있는 실정이다. 그에 따라 대규모의 인적, 물적 등의 피해 또한 증가하고 있다. 산지재해 같은 경우, 예측이 어려우나 그러한 피해를 줄이기 위해서는 산지재해의 발생예상 지역, 피해정도 및 규모에 대한 예측 자료가 필요하다. 재해지도는 그에 따른 예측 자료로써 대상 지역의 위험요인과 잠재적인 영향 등을 표시하여 재해를 예방하는 데에 목적을 두고 있다. 이러한 재해지도를 작성하기 위해 사용되는 기법으로는 정량적 기법의 대표적인 방법으로 결정론적 기법(SHALATAB, SINMAP, GEOtop-FS), 확률론적 기법(빈도비분석법, 우도비, 증거가중법 등), 통계적 기법(로지스틱 회귀분석, 인공신경망 기법)을 사용하고 있다. 본 연구에서는 정량적 기법 중 하나인 결정론적 기법을 활용하여 위험지역을 분석하고 실제 위험지역과 비교하였다. 추후에 확률론적 기법과 통계적인 기법을 활용하여 위험지역을 분석하고자 한다.

  • PDF

Utilization of SAR Data for Baseline Environmental Studies of Central Cebu Island, Philippines ? Phase 1

  • Lituanas, Michael B.;Salvador, Jerry Hervacio G.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.981-983
    • /
    • 2003
  • The Remote Sensing Group of the Mines and Geosciences Bureau (MGB) has acquired SAR data of the Central Cebu Island for its research study area. The MGB is one of the proponent of DOST-NASA PACRIM II Project, which is composed of eleven (11) agencies and institutions in the Philippines, that focuses on the scientific application of radar data with the theme on hazard and natural resources management. The PACRIM II Project, being done on three-year term, is slated for completion in the year 2004. The main thrust of the project study of the MGB is the baseline environmental monitoring studies, on which the data are to be fused with some other available data from LandSAT and photogrammetry. The generated data is part of the information for the update of thematic mapping being done. The 12 ${\times}$ 60 km swath AirSAR data covers the Central Cebu Island. The highlights of conducting this research project are: Extent of Watershed Basin boundaries - identification of the tributaries that drain water supply to the metropolitan area; Monitoring of the mountain highways - identification of landslide risk prone sites as part of natural hazard monitoring on a national highway that cuts along the mountainous areas; and Coastline change assessment - monitoring the coastline activities relative to the rapid urbanization and exposure as part of coastal management. The Phase 1 of this report discusses the fusion with the ArcView generated data as baseline studies on the monitoring activities.

  • PDF

Simulation and validation of flash flood in the head-water catchments of the Geum river basin

  • Duong, Ngoc Tien;Kim, Jeong Bae;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.138-138
    • /
    • 2021
  • Flash floods are one of the types of natural hazards which has severe consequences. Flash floods cause high mortality, about 5,000 deaths a year worldwide. Flash floods usually occur in mountainous areas in conditions where the soil is highly saturated and also when heavy rainfall happens in a short period of time. The magnitude of a flash flood depends on several natural and human factors, including: rainfall duration and intensity, antecedent soil moisture conditions, land cover, soil type, watershed characteristics, land use. Among these rainfall intensity and antecedent soil moisture, play the most important roles, respectively. Flash Flood Guidance is the amount of rainfall of a given duration over a small stream basin needed to create minor flooding (bank-full) conditions at the outlet of the stream basin. In this study, the Sejong University Rainfall-Runoff model (SURR model) was used to calculate soil moisture along with FFG in order to identify flash flood events for the Geum basin. The division of Geum river basin led to 177 head-water catchments, with an average of 38 km2. the soil moisture of head-water catchments is considered the same as sub-basin. The study has measured the threshold of flash flood generation by GIUH method. Finally, the flash flood events were used for verification of FFG. The results of the validation of seven past independent events of flash flood events are very satisfying.

  • PDF

Performance of Northern Exposure Index in Reducing Estimation Error for Daily Maximum Temperature over a Rugged Terrain (북향개방지수가 복잡지형의 일 최고기온 추정오차 저감에 미치는 영향)

  • Chung, U-Ran;Lee, Kwang-Hoe;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.3
    • /
    • pp.195-202
    • /
    • 2007
  • The normalized difference in incident solar energy between a target surface and a level surface (overheating index, OHI) is useful in eliminating estimation error of site-specific maximum temperature in complex terrain. Due to the complexity in its calculation, however, an empirical proxy variable called northern exposure index (NEI) which combines slope and aspect has been used to estimate OHI based on empirical relationships between the two. An experiment with real-world landscape and temperature data was carried out to evaluate performance of the NEI - derived OHI (N-OHI) in reduction of spatial interpolation error for daily maximum temperature compared with that by the original OHI. We collected daily maximum temperature data from 7 sites in a mountainous watershed with a $149 km^2$ area and a 795m elevation range ($651{\sim}1,445m$) in Pyongchang, Kangwon province. Northern exposure index was calculated for the entire 166,050 grid cells constituting the watershed based on a 30-m digital elevation model. Daily OHI was calculated for the same watershed ana regressed to the variation of NEI. The regression equations were used to estimate N-OHI for 15th of each month. Deviations in daily maximum temperature at 7 sites from those measured at the nearby synoptic station were calculated from June 2006 to February 2007 and regressed to the N-OHI. The same procedure was repeated with the original OHI values. The ratio sum of square errors contributable by the N-OHI were 0.46 (winter), 0.24 (fall), and 0.01 (summer), while those by the original OHI were 0.52, 0.37 and 0.15, respectively.

Comparative analysis of activation functions of artificial neural network for prediction of optimal groundwater level in the middle mountainous area of Pyoseon watershed in Jeju Island (제주도 표선유역 중산간지역의 최적 지하수위 예측을 위한 인공신경망의 활성화함수 비교분석)

  • Shin, Mun-Ju;Kim, Jin-Woo;Moon, Duk-Chul;Lee, Jeong-Han;Kang, Kyung Goo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1143-1154
    • /
    • 2021
  • The selection of activation function has a great influence on the groundwater level prediction performance of artificial neural network (ANN) model. In this study, five activation functions were applied to ANN model for two groundwater level observation wells in the middle mountainous area of the Pyoseon watershed in Jeju Island. The results of the prediction of the groundwater level were compared and analyzed, and the optimal activation function was derived. In addition, the results of LSTM model, which is a widely used recurrent neural network model, were compared and analyzed with the results of the ANN models with each activation function. As a result, ELU and Leaky ReLU functions were derived as the optimal activation functions for the prediction of the groundwater level for observation well with relatively large fluctuations in groundwater level and for observation well with relatively small fluctuations, respectively. On the other hand, sigmoid function had the lowest predictive performance among the five activation functions for training period, and produced inappropriate results in peak and lowest groundwater level prediction. The ANN-ELU and ANN-Leaky ReLU models showed groundwater level prediction performance comparable to that of the LSTM model, and thus had sufficient potential for application. The methods and results of this study can be usefully used in other studies.

A Study on Drainage Facilities in Mountainous Urban Neighborhood Parks - The Cases of Baebongsan Park and Ogeum Park in Seoul - (산지형 도시근린공원의 배수시설 특성 - 서울시 배봉산공원과 오금공원을 사례로 -)

  • Lee, Sang-Suk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.5
    • /
    • pp.80-92
    • /
    • 2010
  • The purpose of this study was to analyze drainage facilities in mountainous urban neigbborhood parks--Baebongsan Park and Ogeum Park--in Seoul. Based on an analysis of existing drainage facilities, the volume of storm water runoff (VSW), the runoff rate of open channels(ROC), and the detention capacity of open charmels(DCOC) by each drainage watershed, the coefficient of runoff rate(CROC) as evaluated to be relevant between VSW and ROC and the coefficient of the detention capacity of open channe1s(CDCOC) as evaluated with DCOC compared to VSW were estimated and analyzed by parks and by watersheds. The results are as follows: 1. The total drainage area of Baebongsan Park was 34.13ha including surface runoff area(15.05ha; 44.09%), open channel area(l4.60ha; 42.78%), and natural waterway area(4.48ha; 13.13%). The total drainage area of Ogeum Park was 20.39ha including open channel area (10.14ha; 49.73%), ridge-side gutter area(7.17ha; 35.16%), surface runoff area (2.52ha; 12.36%), and natural waterway area (0.56ha; 2.75%). In Baebongsan Park, the portion of surface runoff was comparatively higher while the portion of artificial drainage area was higber in Ogeum Park. 2. In Baebongsan Park drainage districts were largely divided: VSW was $7.28m^3/s$ in total(average $0.23m^3/s$). Comparatively, tbe VSW in Ogeum Park, including smaller drainage districts, was $4.37m^3/s$ in total(average $0.12m^3/s$). 3. The ROC of Baebmgsan Park was $11.58m^3/s$ in total(average $0.77m^3/s$) and the CROC was 5.26, while in Ogeum Park, the ROC was $15.40m^3/s$(average $0.34m^3/s$) and tbe CROC was 8.87 higher than that of Baebongsan Because the size and slope of the open channel in Baebongsan Park was higher, the average ROC was larger, while tbe CROC of Ogeum Park was higher than that of Baebongsan Park, for the VSW in Ogeum Park was comparatively lower. 4. The DCOC in Baebongsan Park was $554.54m^3$ and the average of CDCOC was 179.83. That of Ogeum Park was $717.74m^3$ and the average of the CDCOC was 339.69, meaning that the DCOC of Ogeum Park was so much higber that drainage facilities in Ogeum Park were built intensively. This study was focused m the capacity of the drainage facilities in mountainous urban neighborhood parks by using the CROC to evaluate relevance between VSW and ROC and the CDCOC to evaluate the DCOC as compared with VSW. The devised methodology and coefficient for evaluating drainage facilities in mountainous urban neighborhood parks may he universally applicable through additional study. Further study m sustainable urban drainage systems for retaining rainwater in a reservoir and for enhancing ecological value is required in the near future.