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Application of the Modified CA-Markov Technique for Future Prediction of 
Forest Land Cover in a Mountainous Watershed

미래 산림식생변화 예측을 위한 개선된 CA-Markov 기법의 적용
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ABSTRACT
토지피복은 부분의 수문‧수질 모형의 요한 매개변수로서, 수자원 변화 측에 요한 입력자료로 활용되고 있다. 본 연구

에서는 개선된 CA (Cellular Automata)-Markov 기법을 이용하여 충주 유역의 미래 산림식생변화에 한 측을 시도하 다. 
측과정으로 과거의 Landsat TM 상 (1985, 1990, 1995, 2000)을 이용하여 기법의 정확도 검증  산림분포의 변화경향을 악
하고, Landsat 산림은 2000년과 2005년의 NOAA AVHRR NDVI값을 기 으로 침엽수림, 혼효림, 활엽수림의 3종으로 구분한 후, 
이를 이용하여 2030년, 2060년, 2090년의 식생변화를 추정하는 방법을 제안하 다. 이 방법의 용결과, 2000년과 비교하여 2090
년의 활엽수림과 혼효림은 각각 14.3 %, 11.6 % 증가하 으며, 침엽수림은 24.9 % 감소하는 것으로 나타났다. 과거의 경향성에 

의해 측을 시도한 본 연구결과는 미래 토지피복 변화에 따른 수문‧수질 향 분석시 지표 조건의 불확실성을 이는데 활용될 

수 있다고 단된다.
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I. INTRODUCTION*

Land use change in South Korea is becoming an 

important topic in water resources and environmental 

areas. It has attracted a lot of scientific interest due to 

the close correlation between land use change and 

recent flood disasters and water resources management 

along with climate change (Fischer and Sun, 2001; 

Matthews et al., 1997; Verburg and Veldkamp, 2001). 

Thus the potential prediction of land use is an important 

factor for future healthy watershed hydrology and 

sustainable water resource management. The change of 

land use is affected strongly by socioeconomic factors 

such as land policies, population migration, urbanization, 

and agricultural product prices (Tong et al., 2003). In 

South Korea, land policy is the most important factor 
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affecting land use patterns especially in suburban areas. 

South Korea has area of 99,820.8 km
2
 and about 63.5 % 

of the total area is forest. Topographic elevations are 

high in the north and east, and lowlands are developed 

in the southwest. Most of the rivers and streams flow 

from east to west. During the past couple of decades, 

the changes of forest land use have been performed by 

reclamation for upland and orchard crops cultivation and 

golf links development, and occurred by forest fires and 

land slides. The changes directly affect evapotranspiration, 

infiltration and soil water storage that change the dy-

namics of surface and subsurface runoff and groundwater 

recharge of a watershed.

Recently, many studies have been carried out for 

evaluating the hydrologic impacts of land use change on 

urbanizing or wetland watershed (McClintock et al., 

1995; Choi et al., 2003; Kim et al., 2005). Usually, the 

impact assessment is being conducted by preparing 

series of land use data spatially classified by satellite 

images for a hydrologic model. Meanwhile, if we are 

trying to evaluate the future potential land use change 

impact on watershed hydrological, environmental and 
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ecological behaviors, we need future land use/cover data 

for the watershed. The future land use prediction model 

should be able to match the statistical patterns of past 

growth and to provide an estimate that matches present 

reality (Clarke et al., 1997; Clarke and Gaydos, 1998). 

Different approaches in land use change have been 

attempted in spatial modeling such as Cellular Automata 

(CA), Artificial Neural Network Models (ANN), Agents 

based modeling, and spatial-statistical (e.g. CA-Markov) 

models. Among the models, the CA has natural affinity 

with GIS (Geographic Information System) and remotely 

sensed data (Torrens and Sullivan, 2001). One of the 

most significant properties of CA is perhaps its simplicity. 

The traditional statistical model, Markov chain analysis, 

has been very successful in interpreting socio-economic 

activities of land use change. The CA-Markov is the 

combined technique of Markov Chain and Cellular 

Automata. Markov Chain model handles lattice-based GIS 

data or satellite images, and reflects the changed 

tendency of present land use. The transition probability 

is fixed for a given time interval, but is difficult to trace 

the actual land use change. If we consider the change of 

fixed interval, the processing of spatial data that have 

sudden change is difficult to predict. This difficulty can 

be supplemented using CA, a nonlinear dynamic model 

which applies the distance direction to the cell and the 

change state of regional contiguity cell continuously. The 

changed state of cell can be estimated together by the 

complex characteristics and conformation because of 

recursive analysis. Park and Kim (2007) predicted the 

spatial expansion of urban areas by applying CA-Markov 

technique considering MCE (multi-criteria evaluation) and 

MOLA (multi-objective land allocation) of factor analysis. 

In applying the CA-Markov technique, Lee and Kim 

(2007) suggested a prediction method of land use change 

by modifying the CA-Markov technique. They reflected a 

logarithmic function for the trend of past land use 

change of each item and considered data of water 

quality protection area and green belt area to include 

systematic factor, and applied the minimal preserved 

probability that is the percent of upper limit of land use 

change between land use classes in the process of 

prediction to prevent unrealistic prediction of future land 

use. Their result showed an enhanced prediction by 

comparing the spatial fit between the original and the 

modified ones.

In this study, the modified CA-Markov technique is 

applied to a 6,661.3 km
2
 forest-dominant watershed, and 

predicts the future land use change of the watershed by 

using the series of Landsat TM (Thematic Mapper) satellite 

images (1985, 1990, 1995, and 2000). Successively, using 

the future predicted results of forest area, the future 

prediction of watershed forest types (evergreen, deciduous, 

and mixed) of the watershed is described using two 

(2000 and 2005) NOAA AVHRR (National Oceanic and 

Atmospheric Administration Advanced Very High Resolution 

Radiometer) NDVI (Normalized Difference Vegetation Index) 

data.

II. THE STUDY WATERSHED

The study watershed has a total area of 6,661.3 km2 

located in the northeast of South Korea within the 

latitude-longitude range of 127.2°E ~ 129.0°E and 36.1°N

~ 37.1°N. (Fig. 1). The elevation ranges from 115 m to 

1,559 m with average hillslope of 36.9 % and average 

elevation of 609 m. The annual average precipitation 

was 1,359.5 mm, and mean temperature was 9.4 ℃ over 

the last 30 years. At the outlet of the watershed, Chungju 

dam that is 97.5 m in height, 447 m in length and has a 

volume of 9.7 million m3 is located. Forest covers 84.5 

%, and 0.8 % and 11.1 % of lowland are upland crop 

and rice paddy fields respectively.

Fig. 1 The Study watershed.



Park, Min Ji․Park, Geun Ae․Lee, Yong Jun․Kim, Seong Joon

Journal of the Korean Society of Agricultural Engineers, 52(1), 2010. 1 63

Fig. 2 The schematic diagram of the modified CA-Markov technique (Lee and Kim, 2007).

III. Materials and Method

1. The CA-Markov technique applied in this study

CA-Markov, one of the spatial-statistical model, is a 

combined Markov Chain and Cellular Automata land cover 

prediction procedure that adds an element of spatial 

contiguity as well as knowledge of the likely spatial 

distribution of transitions to Markov chain analysis. M

arkov chain, studied at the discrete time points of 0, 1, 

2, ..., is characterized by a set of states S and the 

transition probabilities ‘pij’ between the states. Here, pij 

is the probability that the Markov chain is at the next 

time point in state j, given that it is at the present time 

point at state i. The probability matrix P with elements 

pij is called the transition probability matrix of the 

Markov chain. The definition of pij implies that the row 

sums of P are equal to “1” (Adan, 2003). The transition 

probability determines the likelihood for a cell to change 

from a land use class to other class, and the matrix is 

the result of cross tabulation between two land use data 

adjusted by the proportional error.

The CA first introduced by John von Neumann in 

1950s has common place applications in statistical and 

theoretical physics, and is considered to be linked to the 

chaos theory and fractal geometry. Recently, cellular 

automata applications have found their way into 2-D 

applications in urban growth models. CA is nonlinear 

dynamic mathematical systems based on discrete time 

and space (Gutowitz, 1991). A cellular automaton evolves 

in discrete time-steps by updating its states according 

to a transition rule that is applied universally and 

synchronously to each cell at each time-step. The value 

of each cell is determined based on a geometric 

configuration of neighboring cells, which is specified as 

part of the transition rule. Updated values of individual 

cells then become the inputs for the next iteration. As 

iteration is progressed, an initial cellular configuration, 

which is a kind of cellular map containing an initial state 

of each cell, evolves based on the rules defined. The 

transition rules adopted in this study is a probabilistic 

function of the neighborhood. Fig. 2 shows the schematic 

diagram of the modified CA-Markov technique adopted in 

this study (Lee and Kim, 2007).

As the first step for the application of the CA-Markov 

technique (Fig. 2), the conservation areas such as water 

quality protection area and greenbelt zone are excluded 

in the calculation process (upper left part of Fig. 2). By 

the government policy, the areas are preserved by 

legislation. This condition is included as social and 

political factors.

Originally, the CA-Markov process uses two time step 

data of past year and present year, for example, 1985 

and 2000, to predict the next future land uses, 2020 or 
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Fig. 3 The Landsat land uses of the study watershed; (a) 1985, (b) 1990, (c) 1995, and (d) 2000.

2030. However, the land use change pattern shows a 

nonlinear increase or decrease during a given time 

interval. Thus, the application of two land use data can 

give an unrealistic or divergent prediction for a certain 

land use class. Therefore, as the second step (upper 

right part of Fig. 2), the land uses are predicted by the 

pre-determined nonlinear functions of each class, which 

were derived from the multiple land use data more than 

two land uses.

Next, the predicted areas of each class are calculated 

whether all of them are acceptable. For the classes out 

of range from the pre-determined trend, the predicted 

cells of out of range class are counted and accumulated 

from the highest probability value of the class to lower 

probability value by using the probability value map of 

the class until the cell counts are within the acceptable 

range, and change the cells of low probability value into 

another class of having high probability value while 

satisfying the trend of all classes (bottom right and left 

of Fig. 2). This process is iterated until all the classes 

satisfy the acceptable range of each pre-determined trend.

2. The land use data

Fig. 3 shows the Landsat land use data (1985, 1990, 

1995, and 2000) for the study watershed and Table 1 

shows the statistical summary of land use change during 

the periods. The data were obtained from Ministry of 

Land, Transport and Maritime Affairs (http://www.wamis. 

go.kr/).

As the Landsat data in Fig. 3 do not include the forest 

class, the forest was tried to reclassify by using 

vegetation information. In this study, the NOAA AVHRR 

NDVI was adopted to classify the forest into 3 types 

viz. evergreen, mixed, and deciduous. The daily data of 

NOAA-14 AVHRR for 2000 and 2005 were obtained 
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(a) (b) 

Fig. 4 The forest type classified by using NOAA NDVI; (a) 2000, (b) 2005.

from the Korea Meteorological Administration (KMA). The 

NDVI value of each cell is computed with Eq. (1).




(1)

where IR is the cell value of channel 2 (infrared: 0.73 -

1.0 μm) and R is the cell value of channel 1 (visible: 

0.58 - 0.68 μm). The year value of NDVI was calculated 

through the Maximum Value Composite (MVC) method of 

each cell.

Table 1 Statistical summary of land uses from 1985 to 
2000 (Unit: km2 (%))

Year Water Urban
Bare 

field

Grass-

land
Forest

Rice 

paddy

Upland 

crop
Total

1985
68.1

(1.0)

17.4

(0.3)

44.5

(0.7)

56.6

(0.8)

5,725.5

(85.4)

732.1

(10.9)

60.5

(0.9)

6,704.5

(100.0)

1990
68.2

(1.0)

24.5

(0.4)

50.2

(0.7)

67.0

(1.0)

5,712.2

(85.2)

725.3

(10.8)

56.9

(0.8)

6,704.5

(100.0)

1995
68.2

(1.0)

29.7

(0.4)

43.3

(0.6)

75.5

(1.1)

5,696.8

(85.0)

741.0

(11.1)

50.0

(0.7)

6,704.5

(100.0)

2000
67.8

(1.0)

39.0

(0.6)

43.2

(0.6)

92.6

(1.4)

5,664.4

(84.5)

743.9

(11.1)

53.6

(0.8)

6,704.4

(100.0)

Table 2 Statistical summary of forest classes in 2000 and 
2005 (Unit: km2 (%))

Forest class 2000 2005

Evergreen 3,140.8 (55.5) 2,850.9 (50.4)

Mixed 1,458.9 (25.8) 1,622.0 (28.6)

Deciduous 1,062.5 (18.8) 1,189.3 (21.0)

Total 5,662.2 (100.0) 5,662.2 (100.0)

VI. RESULTS AND DISCUSSION

1. The application results of CA-Markov technique for 

Landsat land use

By using the values of Landsat land use change from 

1985 to 2000, the rates of change of each class were 

applied as the bound of land use change in calculating 

the transition probability between land use classes. Table 

3 shows the transition probability matrix from 1985 to 

2000. To reflect the trend of land use change of each 

class, the linear or logarithmic fittings were performed 

using the data.

The modified CA-Markov technique was evaluated using 

three indices which compare the spatial fit between the 

known and the predicted. The first index is the ratio of 

matched cell number of the predicted to the total cell 

number of the known (α). It ranges from 0 to 1. The 

second one is the ratio of matched cell number of the 

predicted to the total cell number as sum of sets of the 

Table 3 Transition probability matrix from 1985 to 2000 

Land use Water Urban Bare field Grassland Forest Paddy Upland crop

Water 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Urban 0.00 1.00 0.00 0.00 0.00 0.00 0.00

Bare field 0.00 0.00 1.00 0.00 0.00 0.00 0.00

Grassland 0.00 0.00 0.00 0.86 0.09 0.05 0.01

Forest 0.00 0.00 0.00 0.00 0.99 0.01 0.00

Paddy 0.00 0.00 0.01 0.01 0.03 0.94 0.01

Upland crop 0.00 0.14 0.01 0.00 0.05 0.05 0.75
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(a) 2000 (b) 2030

   

(c) 2060 (d) 2090

Fig. 5 The predicted land uses by the modified CA-Markov techniques: (a) 2000, (b) 2030, (c) 2060, and (d) 2090 
predicted land uses respectively.

known and the predicted (β) (Lee and Sallee, 1970). It 

ranges from 0 to 1. Finally, the third one is the ratio of 

cell number of the predicted to the cell number of the 

known (γ). It ranges from 0 to 2. For all the indices, the 

prediction accuracy of spatial fit is perfect when the 

value of each index is 1.0. For α and β, the prediction 

accuracy decreases as the value approaches to 0. For γ, 
the prediction accuracy decreases as the value goes away 

from 1 to 0 or 2. Table 4 shows the evaluated three (α, 

Table 4 Summary of the three evaluated index values (α, 
β and γ) for each land use class

Land use α  (0∼1) β (0∼1) γ (0∼2)

Water 0.97 0.95 1.08

Urban 0.73 0.73 0.84

Bare field 0.86 0.80 1.29

Grassland 0.51 0.35 0.94

Forest 0.99 0.97 1.01

Paddy 0.90 0.83 0.96

Upland crop 0.26 0.27 0.42

Average 0.75 0.70 0.93

β and γ) index values for the 2000 predicted land use 

using three land use data of 1985, 1990 and 1995. The 

average values of α, β and γ were 0.75, 0.70, and 0.93 

respectively. The errors may come from the spatial 

resolution of Landsat image which cannot discriminate 

the precise land uses within 30 m by 30 m pixel and 

the classification error for each land use is the obstacle 

for the improvement of prediction accuracy.

2. The future prediction of forest land cover

By using the values of NOAA forest land cover change 

from 2000 to 2005, the rates of change of each class 

were applied as the bound of land use change in calculating 

Table 5 Transition probability matrix of forest cover from 
2000 to 2005

Land use Forest-Evergreen Forest-Mixed Forest-Deciduous

Forest-Evergreen 0.75 0.28 0.28

Forest-Mixed 0.45 0.75 0.26

Forest-Deciduous 0.42 0.26 0.75



Park, Min Ji․Park, Geun Ae․Lee, Yong Jun․Kim, Seong Joon

Journal of the Korean Society of Agricultural Engineers, 52(1), 2010. 1 67

Table 6 The CA-Markov predicted land uses for 2030, 2060 and 2090 (Unit: km2 (%))

Year Water Urban Bare field Grass land Forest-Deciduous Forest-Mixed Forest-Evergreen Paddy Upland crop Total

1985 68.1 (1.0) 17.4 (0.3) 44.5 (0.7) 56.6 (0.8) 5,725.5 (85.4) 732.1 (10.9) 60.5 (0.9) 6,704.5 (100.0)

1990 68.2 (1.0) 24.5 (0.4) 50.2 (0.7) 67.0 (1.0) 5,712.2 (85.2) 725.3 (10.8) 56.9 (0.8) 6,704.5 (100.0)

1995 68.2 (1.0) 29.7 (0.4) 43.3 (0.6) 75.5 (1.1) 5,696.8 (85.0) 741.0 (11.1) 50.0 (0.7) 6,704.5 (100.0)

2000 67.8 (1.0) 39.0 (0.6) 43.2 (0.6) 92.6 (1.4) 1,062.5 (15.8) 1,458.9 (21.8) 3,140.8 (46.8) 705.3 (10.5) 22.3 (0.3) 6,704.5 100.0)

2030 72.4 (1.1) 41.2 (0.6) 67.4 (1.0) 90.0 (1.3) 2,241.4 (33.5) 1,786.8 (26.7) 1,668.2 (24.9) 704.6 (10.5) 18.5 (0.3) 6,704.5 100.0)

2060 73.5 (1.1) 43.0 (0.6) 71.4 (1.1) 94.1 (1.4) 2,104.3 (31.5) 2,035.7 (30.4) 1,559.2 (23.5) 692.0 (10.3) 8.2 (0.1) 6,704.5 100.0)

2090 74.3 (1.1) 42.3 (0.6) 75.2 (1.1) 98.1 (1.5) 2,011.0 (30.1) 2,235.4 (33.4) 1,464.3 (21.9) 681.6 (10.2) 8.3 (0.1) 6,704.5 100.0)

the transition probability between forest land cover 

classes. Table 5 shows the transition probability matrix 

from 2000 to 2005.

The extended long-term future forest land cover 

change was conducted within the Landsat forest area 

distributions. Fig. 5 shows the CA-Markov prediction 

results for the year of 2030, 2060 and 2090 respectively. 

Table 6 shows the statistical summary of the future 

predicted land use changes including forest type. The 

predicted results showed that there were 14.3 % and 

11.6 % increases in 2090 deciduous and mixed forests 

based on 2000 condition. On the other hand, the 2090 

evergreen forest decreased 24.9 % based on 2000.

V. CONCLUSIONS

The modified CA-Markov technique developed by Lee 

and Kim (2007) was applied to a 6,661.3 km
2
 forest- 

dominant watershed to predict the future land use change 

of the watershed by using 1985, 1990, 1995, and 2000 

Landsat TM images and 2000 and 2005 NOAA AVHRR 

data. Firstly, by using the three Landsat land use data of 

1985, 1990 and 1995, the 2000 land use was predicted 

and the result was evaluated using the indices suggested 

by Lee and Kim (2007). The average values of α, β and 

γ were 0.75, 0.70, and 0.93 respectively. After that, the 

2030, 2060 and 2090 forest land cover prediction was 

conducted using the 2000 and 2005 NOAA classified 

forest covers (deciduous, mixed, and evergreen) within 

the 2000 Landsat forest area distributions. The predicted 

results showed that there were 14.3 % and 11.6 % 

increases in 2090 deciduous and mixed forests based on 

2000 condition. On the other hand, the 2090 evergreen 

forest decreased 24.9 % based on 2000.

The future land use changes showed the prediction 

stability of the modified CA-Markov technique, and the 

predicted results showed a reasonable land use change 

for each land use class reflecting the past trend of land 

use change. The results can be applied to future climate 

change impacts on hydrology and water quality of the 

watershed considering future land use changes, which 

reduces the uncertainty of future land surface condition.

Even the method suggested in this study gives some 

information of the future land use, there are many things 

to improve the prediction accuracy. Firstly, the land use 

classification accuracy of input data should be improved 

to decrease the spatial discrepancy of land use between 

data. Secondly, the longer data of land use should be 

prepared to get more stable trend of land use change. 

Thirdly, the government land use plans as a political 

factor, if available, are also necessary to include for 

more reliable prediction results. 
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