• Title/Summary/Keyword: Mound breakwater

Search Result 104, Processing Time 0.028 seconds

Numerical Simulation of Interaction between Composite Breakwater and Seabed under Regular Wave Action by olaFlow Model (olaFlow 모델에 의한 규칙파작용 하 혼성방파제-해저지반의 상호작용에 관한 수치시뮬레이션)

  • Bae, Ju-Hyun;Lee, Kwang-Ho;Jung, Uk Jin;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.270-285
    • /
    • 2018
  • The behavior of wave-induced pore water pressure inside the rubble mound and seabed, and the resultant structure failure are investigated, which are used in design of the composite breakwater representing the coastal and harbor structures. Numerical simulation techniques have been widely used to assess these behaviors through linear and nonlinear methods in many researches. While the combination of strongly nonlinear analytical method and turbulence model have not been applied yet, which can simulate these characteristics more accurately. In this study, olaFlow model considering the wave-breaking and turbulent phenomena is applied through VOF and LES methods, which gives more exact solution by using the multiphase flow analytical method. The verification of olaFlow model is demonstrated by comparing the experimental and numerical results for the interactions of regular waves-seabed and regular waves-composite breakwater-seabed. The characteristics of the spatial distributions of horizontal wave pressure, excess-pore-water pressure, mean flow velocity and mean vorticity on the upright caisson, and inside the rubble mound and seabed are discussed, as well as the relation between the mean distribution of vorticity size and mean turbulent kinetic energy. And the stability of composite breakwater are also discussed.

Experimental Study on Reduction of Rup-Up Height of Sloping Breakwater due to Submerged Structure (수중 구조물에 의한 경사식 방파제의 처오름 감소에 관한 실험적 연구)

  • Park, Seung-Hyun;Lee, Seung-Oh;Jung, Tae-Hwa;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.187-197
    • /
    • 2007
  • Experimental study for a submerged structure was conducted to protect coastal structures and shorelines. The rectangular submerged structure known as the most efficient shape among various submerged structures in the literature was fabricated at the nose of a rubble mound breakwater. The reflection coefficients and the run-up heights along the slope of a breakwater were measured for different significant wave heights and periods. It is found in this study that the reflection coefficient is affected more relatively by the significant wave period than the significant wave height and the run-up heights are reduced approximately 28% in terms of ${^{RU}}_{2%}$ and 26% in terms of ${^{RU}}_{33%}$, respectively, by the installation of a submerged structure inducing the interception and breaking of waves.

Hydraulic Model Test for Armor Stability of Rubble-Mound Breakwaters (경사식방파제의 피복재 안정성에 대한 비교 실험)

  • 이종인
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.4
    • /
    • pp.249-258
    • /
    • 2003
  • In this study, the stability of armor blocks of rubble-mound breakwaters is investigated based on the 2-dimensional hydraulic model test with irregular waves. Amor blocks were used the three types; rock, cube and tetrapod. And Hudson formula and van der Meer formula which are used for calculating the weight of armor blocks are considered. Hudson formula was developed from regular wave tests, while van der Meer formula was developed from irregular wave tests. The purpose of this paper is to compare and test two selected stability formulas using the experimental data.

Numerical analysis on Deformation of Seabed Structures with various size materials by DEM

  • Kim, Mi-Kum;Kim, Chang-Je
    • Journal of Navigation and Port Research
    • /
    • v.31 no.7
    • /
    • pp.589-595
    • /
    • 2007
  • In the majority of previous studies on deformation of seabed structures using DEM, elements of structures have been assumed that it is composed with uniform materials or received fixed wave force, despite that actual submerged structures are composed with various size materials and influenced by complicated fluid field. The goal of this study is to develop a new model for analysis of seabed structure deformation using discontinuous structures composed with various size materials. As the first phase, a model using DEM and VOF, which can compute the deformation of submerged structures composed with various size materials, such as rubble mound structures, is proposed. A model test is carried out and then the validity of the model is discussed.

Simplified Method for Estimation of Mean Residual Life of Rubble-mound Breakwaters (경사제의 평균 잔류수명 추정을 위한 간편법)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.2
    • /
    • pp.37-45
    • /
    • 2022
  • A simplified model using the lifetime distribution has been presented to estimate the Mean Residual Life (MRL) of rubble-mound breakwaters, which is not like a stochastic process model based on time-dependent history data to the cumulative damage progress of rubble-mound breakwaters. The parameters involved in the lifetime distribution can be easily estimated by using the upper and lower limits of lifetime and their likelihood that made a judgement by several experts taking account of the initial design lifetime, the past sequences of loads, and others. The simplified model presented in this paper has been applied to the rubble-mound breakwater with TTP armor layer. Wiener Process (WP)-based stochastic model also has been applied together with Monte-Carlo Simulation (MCS) technique to the breakwater of the same condition having time-dependent cumulative damage to TTP armor layer. From the comparison of lifetime distribution obtained from each models including Mean Time To Failure (MTTF), it has found that the lifetime distributions of rubble-mound breakwater can be very satisfactorily fitted by log-normal distribution for all types of cumulative damage progresses, such as exponential, linear, and logarithmic deterioration which are feasible in the real situations. Finally, the MRL of rubble-mound breakwaters estimated by the simplified model presented in this paper have been compared with those by WP stochastic process. It can be shown that results of the presented simplified model have been identical with those of WP stochastic process until any ages in the range of MTT F regardless of the deterioration types. However, a little of differences have been seen at the ages in the neighborhood of MTTF, specially, for the linear and logarithmic deterioration of cumulative damages. For the accurate estimation of MRL of harbor structures, it may be desirable that the stochastic processes should be used to consider properly time-dependent uncertainties of damage deterioration. Nevertheless, the simplified model presented in this paper can be useful in the building of the MRL-based preventive maintenance planning for several kinds of harbor structures, because of which is not needed time-dependent history data about the damage deterioration of structures as mentioned above.

Hydraulic experiments on change of intervals between submerged structure and breakwater (수중구조물과 방파제 간의 거리변화에 따른 수리 특성 실험)

  • Park, Seung-Hyun;Park, Jin-Ho;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.168-171
    • /
    • 2007
  • The stability of a typical rubble mound breakwater defenced by a submerged structure is investigated using hydraulic experiments. Incident irregular waves are obtained from the Bretschneider-Mistuyasu spectrum. Experiments are carried out for different spacings between two breakwaters (X/d=2-3) and for different relative widths (B/h=0.7-3.0) of the submerged structure. It is observed that a submerged structure of (B/h) of 0.7-3.0 constructed at a seaward distance (X/d) of 2-3 breaks all the incident waves and dissipates energy and breakwater.

  • PDF