DOI QR코드

DOI QR Code

Simplified Method for Estimation of Mean Residual Life of Rubble-mound Breakwaters

경사제의 평균 잔류수명 추정을 위한 간편법

  • Lee, Cheol-Eung (Department of Architectural, Civil, and Environmental Engineering, Kangwon National University)
  • 이철응 (강원대학교 건축.토목.환경공학부)
  • Received : 2022.03.15
  • Accepted : 2022.04.11
  • Published : 2022.04.30

Abstract

A simplified model using the lifetime distribution has been presented to estimate the Mean Residual Life (MRL) of rubble-mound breakwaters, which is not like a stochastic process model based on time-dependent history data to the cumulative damage progress of rubble-mound breakwaters. The parameters involved in the lifetime distribution can be easily estimated by using the upper and lower limits of lifetime and their likelihood that made a judgement by several experts taking account of the initial design lifetime, the past sequences of loads, and others. The simplified model presented in this paper has been applied to the rubble-mound breakwater with TTP armor layer. Wiener Process (WP)-based stochastic model also has been applied together with Monte-Carlo Simulation (MCS) technique to the breakwater of the same condition having time-dependent cumulative damage to TTP armor layer. From the comparison of lifetime distribution obtained from each models including Mean Time To Failure (MTTF), it has found that the lifetime distributions of rubble-mound breakwater can be very satisfactorily fitted by log-normal distribution for all types of cumulative damage progresses, such as exponential, linear, and logarithmic deterioration which are feasible in the real situations. Finally, the MRL of rubble-mound breakwaters estimated by the simplified model presented in this paper have been compared with those by WP stochastic process. It can be shown that results of the presented simplified model have been identical with those of WP stochastic process until any ages in the range of MTT F regardless of the deterioration types. However, a little of differences have been seen at the ages in the neighborhood of MTTF, specially, for the linear and logarithmic deterioration of cumulative damages. For the accurate estimation of MRL of harbor structures, it may be desirable that the stochastic processes should be used to consider properly time-dependent uncertainties of damage deterioration. Nevertheless, the simplified model presented in this paper can be useful in the building of the MRL-based preventive maintenance planning for several kinds of harbor structures, because of which is not needed time-dependent history data about the damage deterioration of structures as mentioned above.

경사제의 평균 잔류수명을 간편하게 추정할 수 있는 방법을 제시하였다. 누적피해의 시간 이력 자료를 기반으로 하는 추계학적 확률모형과 다르게 내구수명의 분포함수를 이용하여 평균 잔류수명을 추정하는 방법이다. 설계 내구수명과 과거 하중이력에 따라 전문가들이 판단한 내구수명의 상한치와 하한치 그리고 그 발생 가능성을 활용하여 분포함수의 모수도 쉽게 추정할 수 있다. 본 연구에서 제시된 간편법을 전면이 TTP로 피복된 경사제에 적용하였다. TTP 피복재의 시간에 따른 누적피해에 대한 모형실험 자료가 있는 동일 조건에 대하여 WP(Wiener Process) 기반의 추계학적 확률모형도 MCS(Monte-Carlo Simulation) 기법과 함께 적용하였다. 각각의 해석 방법으로부터 얻어진 결과들을 MTTF(Mean Time To Failure)와 함께 비교하여, 실제 발생 가능한 시간에 따른 모든 형태의 피해경로에 대하여 경사제의 내구수명 분포함수는 대수정규분포를 따른다는 것을 알 수 있었다. 마지막으로 본 연구에서 제시된 간편법으로 추정된 경사제의 재령에 따른 평균 잔류수명을 WP 기반 추계학적 확률모형의 결과와 비교하였다. 일정한 재령까지는 누적피해의 증가 형태와 관계없이 비교적 잘 일치하였으나, MTTF 근방의 재령에서는 선형적인 증가와 대수적인 증가 형태에서 어느 정도 차이를 보이고 있다. 따라서 불확실성을 올바로 고려하기 위해서는 추계학적 확률모형을 사용하는 것이 바람직하지만, 본 연구에서 제시한 간편법은 누적피해에 대한 시간 이력 자료를 필요로 하지 않기 때문에 항만 구조물에 대하여 평균 잔류수명 기반의 예방적 유지관리를 신속하게 계획할 필요성이 있는 경우에 유용하게 활용될 수 있다.

Keywords

Acknowledgement

본연구는해양수산과학기술진흥원의지원(과제번호 20180323)으로 수행되었으며 지원에 감사드립니다.

References

  1. Ahmad, R. and Kamaruddin, S. (2012). An overview of time-based and condition-based maintenance in industrial application. Compu. Ind. Eng., 63(1), 135-149. https://doi.org/10.1016/j.cie.2012.02.002
  2. Banjevic, D. (2009). Remaining useful life in theory and practice. Metrika, 69, 337-349. https://doi.org/10.1007/s00184-008-0220-5
  3. Bradley, D. and Gupta, R. (2003). Limiting behaviour of the mean residual life. Ann. I Stat. Math., 55, 217-226.
  4. CEM (2006). Coastal Engineering Manual, U.S. Army Corps of Engineers, Washington D.C., USA.
  5. Cui, L.R., Loh, H.T. and Xie, M. (2004). Sequential inspection strategy for multiple systems under availability requirement. European J. of Oper. Res., 155, 170-177. https://doi.org/10.1016/S0377-2217(02)00822-6
  6. Do, P., Voisin, A., Levrat, E. and Iung, B. (2015). A proactive condition-based maintenance strategy with both perfect and imperfect maintenance actions. Reliability Engineering and System Safety, 133, 22-32. https://doi.org/10.1016/j.ress.2014.08.011
  7. Gasperin, M., Juricic, Baskoski, P. and Jozef, V. (2011). Model-based prognostics of gear health using stochastic dynamic models. Mechanical Systems and Signal Processing, 25, 537-538. https://doi.org/10.1016/j.ymssp.2010.07.003
  8. Ghai, G.L. and Mi, J. (1999). Mean residual life and its association with failure rate. IEEE Transactions on Reliability, 48(3), 262-266. https://doi.org/10.1109/24.799897
  9. Lee, C.-E. (2015). Estimation of time-dependent damage paths of armors of rubble-mound breakwaters using stochastic processes. J. of Korean Society of Coastal and Ocean Engineers, 27(4), 246-257 (in Korean). https://doi.org/10.9765/KSCOE.2015.27.4.246
  10. Lee, C.-E. (2016). Condition-based model for preventive maintenance of armor units of rubble-mound breakwaters using stochastic process. J. of Korean Society of Coastal and Ocean Engineers, 28(4), 191-201 (in Korean). https://doi.org/10.9765/KSCOE.2016.28.4.191
  11. Lee, C.-E. (2019). Prediction of expected residual useful life of rubble-mound breakwaters using stochastic gamma process. J. of Korean Society of Coastal and Ocean Engineers, 31(3), 158-169 (in Korean). https://doi.org/10.9765/KSCOE.2019.31.3.158
  12. Lee, C.-E. (2020). Estimation of residual useful life and trackingof real-time damage paths of rubble-mound breakwaters using stochastic wiener process. J. of Korean Society of Coastal and Ocean Engineers, 32(3), 147-160 (in Korean). https://doi.org/10.9765/KSCOE.2020.32.3.147
  13. Lewis, E.E. (1987). Intrduction to reliability engineering. John Wiley & Sons, Inc., N.Y.
  14. Li, N., Lei, Y., Yan, T., Li, N. and Han, T. (2019). A Wiener-process-model-based method for remaining useful life prediction considering unit-to-unit variability. IEEE Transactions on Indus. Elec., 66, 2092-2101. https://doi.org/10.1109/tie.2018.2838078
  15. Melby, J.A. (1999). Damage progression on breakwaters. Ph.D. Thesis, Dept. of Civil Eng., U. of Delaware, USA.
  16. Pecht, M. and Jaai, R. (2010). A prognostic and health management roadmap for information and electronic-rich system. Microelectronics Reliability, 50, 317-323. https://doi.org/10.1016/j.microrel.2010.01.006
  17. Si, X.S., Wang, W., Hu, C.H. and Zhou, D.H. (2012). Remaining useful life estimation based on nonlinear diffusion degradation process. IEEE Transactions on Reliability, 61, 50-67. https://doi.org/10.1109/TR.2011.2182221
  18. Suh, K.-D., Kim, M. and Kim, S.-W. (2013). Comparison of calculation methods of cumulative damage to Breakwater armor layer. Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, 139(4), 277-285. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000181
  19. Tang, L.C., Lu, Y. and Chew, E.P. (1999). Mean residual life of lifetime distributions. IEEE Transactions on Reliability, 48(1), 73-78. https://doi.org/10.1109/24.765930
  20. Wang, W. (2007). A two-stage prognosis model in condition based maintenance. European J. of Oper. Res., 182, 1177-1187. https://doi.org/10.1016/j.ejor.2006.08.047
  21. Wang, X., Balakrishnan, N. and Guo, B. (2014). Residual life estimation based on a generalized Wiener degradation process. Reliability Engineering and System Safety, 124, 13-23. https://doi.org/10.1016/j.ress.2013.11.011
  22. Ye, Z., Shen, Y. and Xie, M. (2012). Degradation-based burn-in with preventive maintenance. European J. of Oper. Res., 221, 360-367. https://doi.org/10.1016/j.ejor.2012.03.028