• Title/Summary/Keyword: Motor vibration

Search Result 1,348, Processing Time 0.031 seconds

Incipient Bearing Fault Detection of Induction Motor via Power Spectrum Density of Vibration Signals (진동신호의 전력스펙트럼 밀도 해석을 통한 유도전동기 베어링 초기고장 검출)

  • Woo, Hyeok-Jae;Jang, Hwan-Cheol;Han, Min-Kwan;Song, Myung-Hyun;Park, Kyu-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2067-2069
    • /
    • 2003
  • 본 연구는 진동 신호의 전력 스펙트럼 밀도(PSD)해석을 이용하여 베어링 초기 고장을 검출할 수 있는 기법을 제시하였다. 외륜, 내륜, 볼에 대하여 각각 폭 0.3 mm의 미소한 흠을 낸 베어링을 이용하여 고장 특성 주파수 패턴 및 부하변동에 따른 영향을 분석하고 고장검출이 용이한 고장 주파수 대역을 설정하였다. 실험결과로부터 제시된 검출기법이 유도전동기 베어링 초기 고장에 적용 가능함을 입증하였다.

  • PDF

Wind Turbine Simulators Considering Turbine Dynamic Characteristics (터빈의 동특성을 고려한 풍력 터빈 시뮬레이터)

  • Park, Hong-Geuk;Abo-Khalil, Ahmed. G.;Lee, Dong-Choon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.617-624
    • /
    • 2008
  • This paper proposes design and implementation of wind turbine simulators which incorporate the turbine dynamic characteristics. At first, the turbine output characteristic in steady state is modelled as a function of wind speed and then dynamic characteristics are modelled such as pitch angle control, torsional vibration, tower shadow effect, wind shear effect, and inertia effect. In addition, a wind speed simulator is developed which can generate the real wind speed pattern. The wind turbine simulator is implemented with 3[kW] M-G set(cage-type induction motor coupled with doubly-fed induction generator) at laboratory.

구조물 진동제어용 리니어 모터 탬퍼의 제작 및 특성 실험

  • Jang, S.M.;Jeong, S.S.;Lee, S.H.;Ham, S.Y.;Kim, B.I.;Park, H.D.;Jung, T.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.85-87
    • /
    • 2001
  • Linear motor damper(LMD) for vibration control of structure is consisted of the NdFeB permanent magnets with high specific energy as the stator, a coil-wrapped nonmagnetic hollow rectangular structure and an iron core as a pathway for magnetic flux. The active mass of LMD is 1.5 ton and consisted of permanent magnet and iron yoke. In this paper, LMD system is manufactured and tested for dynamic characteristics and frequency response.

  • PDF

Speed reducer be indicated a power using of elastic strain (탄성 변형을 이용한 동력이 표시되는 감속기)

  • Noh, S.Y.;Nam, W.K.;Kang, H.K.;Kim, N.I.;Kim, Y.T.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.181-186
    • /
    • 2006
  • In this paper, a noncontact type torque meter using silicone rubber to measure the exact torque value and reduce a vibration and a noise, was developed. When planetary gear speed reducer runs, torque, RPM etc.. of motor change according to load or speed change. So, it needs a device to detect load's change or to diagnose the state of thewhole drive department by monitoring these result values. The noncontact type torque meter using silicone rubber that we're trying to develop this time is low-cost and can measure RPM and torque value simply. Also, it caculate a power using this value and indicate them on screen.

  • PDF

Control of Magnetic Bearing using ATmega128(Focused on experiments) (ATmega128 소자를 이용한 자기베어링 제어(실험을 중심으로))

  • Yang, Joo-Ho;Choi, Gyo-Ho;Choung, Kwang-Gyo
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.139-146
    • /
    • 2013
  • Because the magnetic bearing supports levitating body without contact, wear, noise and vibration, it is very useful to high revolution machinery. In this paper we selected ATmega 128, a less expensive and widely used micro controller, for control the magnetic bearing system. And we selected the sampling time and the control gain of PID controller through trial-and-error. The control program of the one board controller utilized lookup table to reduce calculation time, and bit shifting for the integer calculation in instead of floating point calculation. As the results, the controller carried out relatively high speed PID control on sampling time 0.25 ms. At last the rotation test for the magnetic bearing system was carried out by 3 phase induction motor and air turbine.

Transient Dynamic Analysis of Scroll Compressor Crankshaft Using Finite Element-Transfer Matrix Method (유한요소-전달행렬법에 의한 스크롤 압축기 크랭크축의 과도 동적 해석)

  • 김태종
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.97-106
    • /
    • 2000
  • The dynamic behavior of crankshaft-bearing system in scroll compressor has been investigated using the combined methodologies of finite elements and transfer matrices. The finite element formulation is proposed including the field element for a shaft section and the point element at balancer weight locations, bearing locations, etc., whereas the conventional method is used with the elements. The Houbolt method is used to consider the time march for the integration of the system equations. The linear stiffness and damping coefficients are calculated for a finite cylindrical fluid-film bearing by solving the Reynolds equation, using finite difference method. The orbital response of crankshaft supported on the linear bearing model is obtained, considering balancer weights of motor rotor. And, the steady state displacement of crankshaft are compared with a variation in balancer weight. The loci of crankshaft at bearing locations are composed of the synchronous whirl component and the non-synchronous whirl component.

  • PDF

Noise Prediction of Korea High Speed Train (KHST) and Specification of Sub-components (한국형 고속전철 차량소음 예측 및 부품 소음관리방안)

  • ;;;H.W. Thrane
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.10
    • /
    • pp.758-765
    • /
    • 2002
  • KITECH and ODS performed a study of internal and external noise prediction of the Korean high speed prototype test train(HSR 350X). The object of this study was 3 kinds of cars, trailer car(TT2), motorized car(TMI ) and power car(TPI) and the predicted noise was for the two different driving speeds in free field and tunnel conditions. Data of carbody design and noise sources were delivered from manufactures. Some of noise sources which were not available in the project team, were chosen by experiences of ODS. Internal noise level of each car was predicted for two cases i.e, at 300 km/h and 350 km/h. In addition sound transmission path and dominant noise sources were also investigated for each section of the car, which is circular shell typed part of whole carbody. In case of TT2, the dominating sound transmission path is the (floor in terms of structure-borne noise and air-borne noise. The main noise sources are structure-borne noise from the yaw-damper and air-borne noise from the wheel/rail contact, whereas the dominating sound transmission path of TMI are floor and sidewall below the window in terms of structure-borne noise. The main noise sources of TMI are structure-borne noise from motor/gear unit and the yaw-damper in the free field, and air-borne noise from the wheel/rail contact and structure-borne noise from motor/gear unit in the tunnel. Through the external noise prediction for the KHST test train formation, the noise form the wheel/rail contact is estimated as one of the major sources. In addition, the noise specification of sub-component was proposed for managing each sub-surpplier to reach the KHST noise requirement. The specification provide the sound power of machinery part and transmission loss of component of carbody structure. The predicted noise level in each case exceeded the required limit. Through this study, the noise characteristics of the test train were investigated by simulation, and then the actual test will be performed in near future. Both measured and calculated data will be compared and further work for noise reduction will be continued.

Analysis of the Vibration Characteristics of a High-Speed Train using a Scale Model (축소모델을 통한 고속철도 차량의 진동특성 해석 및 검증)

  • Han, Jae Hyun;Kim, Tae Min;Kim, Jeung Tae
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.7-13
    • /
    • 2013
  • A scaled version of a roller rig is developed to demonstrate the dynamic characteristics of a railway vehicle for academic purposes. This rig is designed based on Jaschinski's similarity law. It is scaled to 1/10 of actual size and allows 9-DOF motion to examine the up and down vibration of a train set. The test rig consists of three sub-hardware components: (i) a driving roller mechanism with a three-phase AC motor and an inverter, (ii) a bogie structure with first and second suspensions, and (iii) the vehicle body. The motor of the rig is capable of 3,600rpm, allowing the test to simulate a vehicle up to a maximum speed of 400Km/hr. Because bearings and joints are properly connected to the sub-structures, various motion analyses, such as a lateral, pitching, and yawing motion, are allowed. The slip motion between the rail and the wheel set is also monitored by several sensors mounted in the rig. After the construction of the hardware, an experiment is conducted to obtain the natural frequencies of the dynamic behavior of the specimen. First, the test rig is run and data are collected from six sets of accelerometers. Then, a numerical analysis of the model based on the ADAMS program is derived. Finally, the measurement data of the first three fundamental frequencies are compared to the analytical result and the validation of the test rig is conducted. The results show that the developed roller rig provides good accuracy in simulating the dynamic behavior of the vehicle motion. Although the roller rig designed in this paper is intended for academia, it can easily be implemented as part of a dynamic experiment of a bogie and a vehicle body for a high-speed train as part of the research efforts in this area.

Noise Prediction of Korea High Speed Train (KHST) and Specification of Sub-components (한국형 고속전철 차량소음 예측 및 부품 소음관리방안)

  • ;;;H.W. Thrane
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.917-923
    • /
    • 2002
  • KITECH and ODS performed a study of internal and external noise prediction of the KHST test train. The object of this study was 3 kind of cars; trailer car(TT2), motorized car(TM1) and power car(TP1) and the predicted noise was calculated for the two different driving speeds in free field and tunnel conditions. Data of carbody design and noise sources were delivered from each manufactures. Some of noise sources which were not available in project team, were chosen by experiences of ODS. Internal noise level of each car were predicted for two cases i.e, at 300 km/h and 350 km/h. In addition sound transmission path and dominant noise sources were also investigated of each section of car, which is circular shell typed part of whole carbody. In case of TT2, the dominating sound transmission path is floor in terms or structure-borne noise and air-borne noise. The main noise sources are structure-borne noise from the yaw-damper and air-borne noise from the wheel/rail contact, whereas the dominating sound transmission path of TM1 are floor and sidewall below the window in terms of structure-borne noise. The main noise sources of TM1 are structure-borne noise from motor/gear unit and the yaw-damper in the free field, and air-borne noise from the wheel/rail contact and structure-borne noise from motor/gear unit in the tunnel. Through the external noise prediction for the KHST test train formation, the noise form the wheel/rail contact is estimated as one of the major sources. In addition, the noise specification of sub-component was proposed for managing each sub-surpplier to reach the KHST noise requirement. The specification provide the sound power of machinery part and transmission loss of component of carbody structure. The predicted noise level in each case exceeded the required limit. Through this study, the noise characteristics of the test train were investigated by simulation, and then the actual test will be performed in near future. Both measured and calculated data will be compared and further work for noise reduction will be continued.

  • PDF

The Effects of PNF Upper Extremity Pattern Based Vibration Exercise Equipment on Stability and Balance of the Elderly (PNF 상지패턴에 기초한 진동운동기구 훈련이 노인의 체간 안정성과 균형에 미치는 영향)

  • Lee, Hyoungsoo;Im, Jungdae;Lee, Gihun;Lee, Jiseong;Lee, Jinwuk;Seo, Yeonju;Son, Jiyoon;An, Hyojoeng;Oh, Hyunjeong;Youn, Haneul;Lee, Seoyeon;Kim, Jangsun
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.3 no.3
    • /
    • pp.59-71
    • /
    • 2015
  • Purpose : This study examines the effect of vibration exercise grafting PNF patterns for 6 weeks on upper body stability and equilibrium for seniors having fifteen or over of MMSE-K. Method : A total of 10 senior citizens participated in this study. Each participant performed PNF patterned exercises using vibration sports equipment for 30 minutes, once static a week, for six weeks. We measured trunk stability and balance degree before and after the six-week exercise program. Motor Assessment Scale (MAS) was used to measure trunk stability, while Functional Reach Test (FRT) and Timed Up and Go (TUG) was used to measure balance degree. The collected data was processed using paired t-test to confirm the difference between pre-program conditions and post-program conditions. Results: The results of our study show that post-program trunk stability measurements increased when compared to pre-program data; however, this increase was not statistically significant. pre and post-measurements for satatic balance and dynamic balance were statistically unchanged. Conclusion: Due to limitations in the number of participants, the procedural design of this experiment, and the limited amount of time participants actually controlled, this study failed to produce statistically significant results. However, further study should be conducted using a systematically implemented exercise program to show support for exercising with flexi-bar as an effective program for the elderly.