• Title/Summary/Keyword: Motor design methodology

Search Result 145, Processing Time 0.03 seconds

Design of Optimized Fuzzy Cascade controller Based on Partical Swarm Optimization for Ball & Beam System (볼빔 시스템에 대한 입자 군집 최적화를 이용한 최적 퍼지 직렬형 제어기 설계)

  • Jang, Han-Jong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2322-2329
    • /
    • 2008
  • In this study, we introduce the design methodology of an optimized fuzzy cascade controller with the aid of particle swarm optimization(PSO) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. We introduce the fuzzy cascade controller scheme which consists of the outer(1st) controller and the inner(2nd) controller as two cascaded fuzzy controllers, and auto-tune the control parameters(scaling facrors) of each fuzzy controller using PSO. For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on PSO, is presented in comparison with the conventional PD cascade controller based on serial genetic alogritms.

Rotor & Stator Design on Torque Ripple Reduction for a Synchronous Reluctance Motor with Concentrated Winding using Response Surface Methodology (반응표면법을 이용한 집중권선 동기 릴럭턴스 전동기의 토크 리플 저감에 관한 회전자 및 고정자 설계)

  • Choi, Yun-Chul;Kim, Hong-Seok;Lee, Min-Myung;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.860-861
    • /
    • 2007
  • This paper deals with optimum design criteria to minimize torque ripple of concentrated winding Synchronous Reluctance Motor (SynRM) using Response Surface Methodology (RSM). The feasibility of using RSM with the finite element method(FEM) in practical engineering problem is investigated with computational examples and comparison between the fitted response and the results obtained from an analytical solution according to the design variables of stator and rotor in concentrated winding SynRM (6slot).

  • PDF

Application of the Axiomatic Design Methodology to the Design of PBGA Package with Polyimide Coating Layer

  • Yang, Ji-Hyuck;Lee, Kang-Yong;Dong, C. Y.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1572-1581
    • /
    • 2004
  • The purposes of the paper are to apply the axiomatic design methodology to the design of PBGA package with polyimide coating under hygrothermal loading in the IR soldering process and to suggest more reliable design conditions by stress analysis. The analysis model is a 256-pin perimeter Plastic Ball Grid Array (PBGA) package with the polyimide coating surrounding chip and above surface of BT-substrate. The polyimide coating is suggested to depress the maximum stresses occurred on the stress concentration positions. The axiomatic design methodology is proved to be useful to find the more reliable design conditions for PBGA package. Finally, the optimal values of design variables to depress the stress in the PBGA package are obtained.

Thermal Characteristic Analysis of Induction Motors for Machine Tool Spindle for Motion Error Prediction (운동오차 예측을 위한 공작기계 스핀들용 유도전동기의 발열량 해석)

  • Seong, Ki-Hyun;Cho, Han-Wook;Hwang, Jooho;Shim, Jongyoub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.141-147
    • /
    • 2015
  • This paper deals with thermal characteristic analysis of induction motors for machine tool spindle for motion error prediction. Firstly, the inverse design of general induction motors for machine tool spindle has been performed by design principles. Characteristics considering VVVF inverter of induction motors were analyzed. Secondary, power loss and thermal characteristics of induction motors analyzed by equivalent thermal resistance model from Motor-CAD S/W. To develop a second-order fitted power-loss distribution model for the constant-torque operating range of the induction motor, we employed the design of experiment and response surface methodology techniques. Finally, the analysis results were experimentally verified, and the validity of the proposed analysis method was confirmed.

Development of a Novel Direct-Drive Tubular Linear Brushless Permanent-Magnet Motor

  • Kim, Won-jong;Bryan C. Murphy
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.279-288
    • /
    • 2004
  • This paper presents a novel design for a tubular linear brushless permanent-magnet motor. In this design, the magnets in the moving part are oriented in an NS-NS―SN-SN fashion which leads to higher magnetic force near the like-pole region. An analytical methodology to calculate the motor force and to size the actuator was developed. The linear motor is operated in conjunction with a position sensor, three power amplifiers, and a controller to form a complete solution for controlled precision actuation. Real-time digital controllers enhanced the dynamic performance of the motor, and gain scheduling reduced the effects of a nonlinear dead band. In its current state, the motor has a rise time of 30 ms, a settling time of 60 ms, and 25% overshoot to a 5-mm step command. The motor has a maximum speed of 1.5 m/s and acceleration up to 10 g. It has a 10-cm travel range and 26-N maximum pull-out force. The compact size of the motor suggests it could be used in robotic applications requiring moderate force and precision, such as robotic-gripper positioning or actuation. The moving part of the motor can extend significantly beyond its fixed support base. This reaching ability makes it useful in applications requiring a small, direct-drive actuator, which is required to extend into a spatially constrained environment.

Sensorless Speed Control of Induction Motor Based on System-On-A-Chip Design (원칩 설계에 의한 유도전동기의 센서리스 속도제어)

  • Lee, H.J.;Kim, S.J.;Lee, J.H.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1102-1104
    • /
    • 2000
  • Recently effective system-on-a-chip design methodology is developed, and ASIC chip design is much studied for motor control. This paper investigates the design and implementation of ASIC chip for sensorless speed control of induction motor using VHDL which is a standarded hardware description language. The sensorless control strategy is to design an adaptive state observer for flux estimation and to estimate the rotor speed from the estimated rotor flux and stator current. The presented system is implemented using a simple electronic circuit based on FPGA.

  • PDF

The Characteristic Analysis of Concentrated Winding Synchronous Reluctance Motor Vs. distributed Winding Synchronous Reluctance Motor through Experiments (실험을 통한 집중권선형 SynRM과 분포권 SynRM의 특성분석)

  • Lee, Byeong-Du;Lee, Jung-Ho;Lee, Seung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1051-1052
    • /
    • 2011
  • This paper deals with optimum design criteria to minimize the torque ripple of a concentrated winding Synchronous Reluctance Motor(SynRM) using Response Surface Methodology(RSM). The feasibility of using RSM with the finite element method(FEM) in practical engineering problem is investigated with omputational examples and comparison between the fitted response and the results obtained from an analytical solution according to the design variables of stator and rotor in concentrated winding SynRM(6slot). The focus of this paper is the efficiency evaluation on the basis of load condition in a Concentrated Winding Synchronous Reluctance Motor and distributed Winding Synchronous Reluctance Motor.

  • PDF

Effect of Geometrical Parameters on Optimal Design of Synchronous Reluctance Motor

  • Nagarajan, V.S.;Kamaraj, V.;Balaji, M.;Arumugam, R.;Ganesh, N.;Rahul, R.;Lohit, M.
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.544-553
    • /
    • 2016
  • Torque ripple minimization without decrease in average torque is a vital attribute in the design of Synchronous Reluctance (SynRel) motor. As the design of SynRel motor is an arduous task, which encompasses many design variables, this work first analyses the significance of the effect of varying the geometrical parameters on average torque and torque ripple and then proposes an extensive optimization procedure to obtain configurations with improved average torque and minimized torque ripple. A hardware prototype is fabricated and tested. The Finite Element Analysis (FEA) software tool used for validating the test results is MagNet 7.6.0.8. Multi Objective Particle Swarm Optimization (MOPSO) is used to determine the various designs meeting the requirements of reduced torque ripple and improved torque performance. The results indicate the efficacy of the proposed methodology and substantiate the utilization of MOPSO as a significant tool for solving design problems related to SynRel motor.

A Design Method Considering Torque and Torque-ripple of Interior Permanent Magnet Synchronous Motor by Response Surface Methodology (반응표면분석법에 의한 매입형영구자석동기전동기의 토크와 토크리플을 고려한 설계기법)

  • Baek, Seung-Koo;Jeon, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.557-564
    • /
    • 2019
  • The characteristics of the torque and torque ripple of Interior Permanent Magnet Synchronous Motor(IPMSM) are influenced by the size and position of the rotor magnet and the size of the stator slot. This paper deals with the optimal design method for improving torque and torque ripplerate for IPMSM using Response Surface Methodology(RSM). Two objective functions of torque output and torque ripple were derived from the sensitivity analysis by Plackett-Burmann(PB) for the characteristic variables affecting torque and torque ripple. Secondary characteristic variables were selected from the derived objective function and RSM secondary regression model function was estimated by the experiment schedule and analysis results according to the Central Composite Design (CCD). The reliability of the secondary regression model was verified using ANOVA table. The analysis according to the experimental schedule was verified by JMAG(Ver. 18.0) which is Finite Element Method(FEM) software. The torque output of IPMSM applied with final characteristic variables was increased torque output by 11.5 % and the torque ripplerate was reduced by 9.1 %.

Optimization of BLDC Motor for Reduction of Cogging Torque Using Response Surface Methodology (반응표면방법론에 의한 BLDC 전동기의 코깅토크저감을 위한 최적화)

  • Kim, Young-Kyoun;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.647-649
    • /
    • 2000
  • This paper presents a optimization procedure by using Response Surface Methodology(RSM) to determine design Parameters for reducing cogging torque in BLDC motor of Electric Power Steering (EPS). RSM is achieved through using the experiment design method in combination with Finite Element Method and well adapted to make analytical model for a complex problem considering a lot of interaction of these parameters. Moreover, Sequential Quadratic Problem (SQP) method is used to solve the resulting of constrained nonlinear optimization problem.

  • PDF