• Title/Summary/Keyword: Motor core

Search Result 527, Processing Time 0.033 seconds

Heat Treatment of Stator Core for Reduction of DC-Bias of Cogging Torque (코깅토크 DC성분 저감을 위한 모터 철심 열처리)

  • Ha, Kyung-Ho;Kim, Ji-Hyun;Kwon, Oh-Yeoul;Kim, Jae-Kwan;Lim, Yang-Su
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.695-696
    • /
    • 2008
  • This paper deals with the reduction of DC component of cogging toruqe by using the heat treatment of the stator core. The stator core is made of electrical steel sheared by the punching die. From the punching process, large mechanical stress at the edge of stator tooth induces significant plastic and elastic deformation and influences magnetic properties. Then, these phenomenon in the sheared region has influence on the magnetic unbalance in the air-gap of motor. This paper investigated the effect of the punching process on the magnetization process and the mechanical deformation and proposed the stress relief annealing method for the reduction of friction torque among one of motor characteristics.

  • PDF

Characteristic Analysis of a Permanent Magnet Transverse Flux Linear Motor with Spiral Core

  • Lee, Ji-Young;Kim, Ji-Won;Woo, Byung-Chul;Kang, Do-Hyun
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.111-116
    • /
    • 2013
  • This paper presents a characteristic analysis method of a permanent magnet type transverse flux linear motor (TFLM) with spiral cores. The spiral cores are used as the mover cores in order to make 3-dimensional (3-D) magnetic flux paths at the TFLM which have 3-D magnetic flux flows. The 3-D Equivalent Magnetic Circuit Network Method is used to analyse the magnetic characteristics of the machine, and an imaginary part, 'flux barrier,' is introduced to consider the spiral core characteristic. Magnetic parameters such as flux, inductance, and thrust are calculated from the analysis results. The computed thrust forces are compared to measured values to confirm the accuracy of the analysis.

A Study on the Selection of Core Materials in Motors according to Operating Speed Range (전동기 주 운전 영역에 따른 코어 재질 선정에 관한 연구)

  • Lee, Byeong-Hwa;Lee, Sang-Ho;Hong, Jung-Pyo;Ha, Kyung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.791-792
    • /
    • 2006
  • In motor design, an important factor is the content of silicon in coss material, which can effect the saturation of magnetic circuit and coss loss. While the content of silicon is high, the core loss will be reduced. At the same time, in order to assure the effective flux, the magnetizing current must be increased and then the copper loss becomes higher. Therefore the material with high content of silicon, which is used in the motor, can not always give the high efficiency. In this paper flux linkage of two different material s10 and s60 is compared according to the operating region and then exciting current to obtain same flux is estimated. By comparing core loss and copper loss between two material with the estimated current and flux linkage, this paper presents a criterion in determining the material for higher efficiency

  • PDF

Estimation Iron Loss Coefficients and Iron Loss Calculation of IPMSM According to Core Material (철심 재질에 따른 철손 계수 산정 및 IPMSM의 철손 계산)

  • Kang, Bo-Han;Kim, Yong-Tae;Cho, Gyu-Won;Lee, Jung-Gyu;Jang, Ki-Bong;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1269-1274
    • /
    • 2012
  • In this paper, the iron loss was calculated using estimated iron loss coefficient at 650W Interior Permanent Magnet Synchronous Motor(IPMSM) and 250W IPMSM. The iron loss coefficients was estimated different according to electrical steel material used to stator and rotor core in motor. Aspect of The rotating flux field and alternating flux field was confirmed by magnetic field behavior and harmonic analysis in stator core, the iron loss was calculated using flux density by Finite Element Method(FEM) and estimated coefficients by iron loss coefficient estimation proposed in this paper. The iron loss experiment was performed for verified to iron loss calculation, and the iron loss coefficients were verified by comparison of iron loss calculation value and experimental value.

Iron Loss Analysis of Transverse Flux Linear Motor using Solid type Yoke (Solid type 요크를 사용하는 횡자속 전동기의 철손해석)

  • Lee Ji-Young;Hong Jung-Pyo;Chang Jung-Hwan;Kang Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1055-1057
    • /
    • 2004
  • This paper deals with a qualitative analysis of iron loss in Transverse Flux Linear Motor (TFLM). 3D equivalent magnetic circuit network method (EMCNM) is used as an analytical method to get flux density of each element. The total core loss is calculated with the magnetic flux density and core loss curves of an optional material. The results of iron loss analysis can be used as a criterion to decide the manufactural shape such as lamination or solid type core, skew position, etc.

  • PDF

The Design LDM with Double-Sided Moving Magnets for Short Stroke (Short Stroke에 적합한 양측식 LDM의 설계)

  • Baek, Su-Hyeon;Yun, Sin-Yong;Kim, Yong;Ham, Jung-Geol;Kim, Cheol-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.86-88
    • /
    • 1994
  • In this paper, we present the design procedure and analysis the fundamental characteristics for Linear DC motor using permeance method and finite element method. Designed LDM is made of two permanent magnets, three iron core and amateur windings. For the design the LDM, first of all it is nessary to calculate the air gap flux density and thrust force, after that to determine core size, the numbers of winding turns, winding width, motor cross section area and losses in the coil. Also, we analysis the fundamental characteristics for implemented LDM according to proposed design procedure, and we find that the implemented LDM generated constant thrust force for costant current as long as iron of core is not saturated. Finally, we find that the proposed design procedure in this paper is effective to design and implementation of LDM.

  • PDF

Hardware Implementation of Motor Controller Based on Zynq EPP(Extensible Processing Platform) (Zynq EPP를 이용한 모터 제어기의 하드웨어 구현)

  • Moon, Yong-Seon;Lim, Seung-Woo;Lee, Young-Pil;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1707-1712
    • /
    • 2013
  • In this paper, we implement a hardware for motor control based on FPGA + embedded processor using Zynq EPP which is All Programmable SoC in order to improve a structural problem of motion control based on such as DSP, MCU and FPGA previously. The implemented motor controller that is fused controller with advantage of FPGA and embedded processor. The signal processing part of high velocity motor control is performed by motor controller based on FPGA. A motion profile and kinematic calculation that are required algorithm process such as operation of a complicate decimal point has processed in an embedded processor based on dual core. As a result of a hardware implementation, it has an advantage that has can be realized an effect of distribution process in one chip. It has also an advantage that is able to organize as a multi-axis motor controller through adding the IP core of motor control implemented on FPGA.

Characteristics Analysis of Pole Changing Memory Motor According to Arrangement of magnet (영구자석 배열에 따른 극변환 메모리 모터의 특성 분석)

  • Kim, Young-Hyun;Seo, Jun;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.892-893
    • /
    • 2015
  • This paper deals with a characteristic that varies the number of magnetic pole in permanent magnet (PM) motor in order to reduce energy consumption. The pole changing memory motor (PCMM) can change the number of magnetic poles and produce two types of torque. When the motor operates with eight poles, it produces a magnetic torque at low rotational speeds. When the motor changes to four poles, it produces both magnetic torque and reluctance torque at high speeds. The paper explain the principle and basic characteristics of the motor by using a finite element method magnetic-field analysis, which consists of a PM magnetized by a pulse d-axis current of the armature winding. The results of our experiment show that the proposed motor reduces core loss by 10% and 55% under no-load and load conditions, and doubles the speed range of the motor.

  • PDF

Analysis of On-Line Partial Discharge in High Voltage Motor Stator Windings (고압전동기 고정자 권선의 운전중 부분방전 분석)

  • Lee, Sang-Kil;Kim, Hee-Dong;Kim, Kwang-Hun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.152-155
    • /
    • 2002
  • During normal operation, partial discharge(PD) tests were performed using turbine generator analyzer(TGA) in high voltage motor. Epoxy-mica couplers are installed at motor terminal and analyzed PD signal using TGA. #A motor stator insulation is good because small partial discharges are detected PD pattern show that PD occurs in insulation. PD of #B motor is larger than that of #A motor and PD pattern show that positive PD larger than negative PD. It means that PD occurs between insulation and slot. And A phase PD magnitude of #B motor is large and high compare with any other phase. Therefore wedge, core and slot of #B motor need to check and repair.

  • PDF

Analysis of On-Line Partial Discharge in High Voltage Motor Stator Windings (고압전동기 고정자 권선의 운전중 부분방전 분석)

  • Lee, Sang-Kil;Kim, Hee-Dong;Kim, Kwang-Hun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.199-202
    • /
    • 2002
  • During normal operation, partial discharge(PD) tests were performed using turbine generator analyzer(TGA) in high voltage motor. Epoxy-mica couplers are installed at motor terminal and analyzed PD signal using TGA. #A motor stator insulation is good because small partial discharges are detected. PD pattern show that PD occurs in insulation. PD of #B motor is larger than that of #A motor and PD pattern show that positive PD larger than negative PD. It means that PD occurs between insulation and slot. And A phase PD magnitude of #B motor is large and high compare with any other phase. Therefore wedge, core and slot of #B motor need to check and repair.

  • PDF