• 제목/요약/키워드: Motor Parameter

검색결과 1,019건 처리시간 0.037초

정수 측정 시험에 의한 고효율 유도 전동기의 손실 특성 비교 (Comparison of Loss Characteristics of High-Efficiency Induction Motor by Parameter Measurement Test)

  • 변한섭;김성철;양성한;한성진;주수원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 A
    • /
    • pp.318-320
    • /
    • 1999
  • Electric motor transforms electric power into mechanical power. It is important to increase efficiency of motor to save energy and to decrease operating cost. In this paper, some parameters and losses of high-efficiency induction motor and standard induction motor are measured by blocked-rotor test and no-load test. Operational parameters of high-efficiency induction motor that are compared with those of standard motor.

  • PDF

Parametric Design을 이용한 BLDC 전동기의 설계 (Design of BLDC motor using Parametric design)

  • 권순오;이석희;김성일;홍정표
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1013-1014
    • /
    • 2007
  • This paper presents the design of Brushless DC (BLDC) motor using parametric design. According to the variation of magnitude of back emf and inductance, characteristic equations of BLDC motor are solved then output power, current, and torque ripples are calculated. Therefore output characteristics of BLDC motor according to motor parameter can be easily understood, and the range of back emf and inductance satisfying required output performance can be easily found. Presented design method leads to the BLDC motor design to be simple and effective, and the optimal design of BLDC motor using parametric design for 3kW with 50000rpm is presented.

  • PDF

Parameter Identification of a Synchronous Reluctance Motor by using a Synchronous PI Current Regulator at a Standstill

  • Hwang, Seon-Hwan;Kim, Jang-Mok;Khang, Huynh Van;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • 제10권5호
    • /
    • pp.491-497
    • /
    • 2010
  • This paper proposes an estimation algorithm for the electrical parameters of synchronous reluctance motors (SynRMs) by using a synchronous PI current regulator at standstill. In reality, the electrical parameters are only measured or estimated in limited conditions without fully considering the effects of the switching devices, connecting wires, and magnetic saturation. As a result, the acquired electrical parameters are different from the real parameters of the motor drive system. In this paper, the effects of switching devices, connecting wires, and the magnetic saturation are considered by simultaneously using the short pulse and closed loop equations of resistance and synchronous inductances. Therefore, the proposed algorithm can be easily and safely implemented with a reduced measuring time. In addition, it does not need any external or additional measurement equipment, information on the motor's dimensions, and material characteristics as in the case of FEM. Several experimental results verify the effectiveness of the proposed algorithm.

적응 슬라이딩모드 자속 관측기를 이용한 인덕션 모터의 슬라이딩 모드 제어 (Sliding Mode Control of Induction Motors Using an Adaptive Sliding Mode Flux Observer)

  • 김도우;정기철;이승학
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권10호
    • /
    • pp.587-594
    • /
    • 2005
  • An adaptive observer for rotor resistance is designed to estimate rotor flux for the a-b model of an induction motor assuming that rotor speed and stator currents are measurable. A singularly perturbed model of the motor is used to design an Adaptive sliding mode observer which drives the estimated stator currents to their true values in the fast time scale. The adaptive observer on the sliding surface is based on the equivalent switching vector and both the estimated fluxes and the estimated rotor resistance converge to their true values. A speed controller considering the effects of parameter variations and external disturbance is proposed in this paper. First, induction motor dynamic model at nominal case is estimated. based on the estimated model, speed controller is designed to match the prescribed speed tracking specifications. Then a dead-time compensator and a robust controller are designed to reduce the effects of parameter variations and external disturbances. the desired speed tracking control performance can be preserved under wide operating range, and good speed load regulating performance. Some simulated results are provided to demonstrate the effectiveness of the Proposed controller.

유도전동기의 속도 센서 없는 견실한 벡터 제어 (Rubust Vector Control of an Induction Motor without Speed Sensor)

  • 박태식;김성환;김남정;유지윤;박귀태
    • 전기전자학회논문지
    • /
    • 제1권1호
    • /
    • pp.55-63
    • /
    • 1997
  • 본 논문의 목적은 유도 전동기의 속도 센서 없는 견실한 벡터 제어의 구현에 있다. 이를 위해 MRAS(Model Reference Adaptive System)를 사용하여 유도 전동기의 속도를 추정하였고 파라미터 변동에 견실한 두 개의 회전자 자속 관측기를 설계하여 MRAS 속도 추정기에 기준 모델과 추정 모델로 사용하였다. MRAS에 근거를 둔 전체 제어 기법은 2.2kW 유도 전동기의 벡터 제어 드라이브를 사용하여 실현되었으며, 본 논문에서 제한한 속도 센서 없는 벡터 제어 기법이 기존의 속도 센서 없는 제어 기법에 비해 보다 안정하고 견실함을 증명하였다.

  • PDF

자기부상 시스템을 위한 가속율도달법칙기반의 슬라이딩 모드 제어 성능 평가 (Performance Evaluation of Sliding Mode Control using the Exponential Reaching Law for a Magnetic Levitation System)

  • 문석환;이기창;김지원;박병건;이민철
    • 제어로봇시스템학회논문지
    • /
    • 제20권4호
    • /
    • pp.395-401
    • /
    • 2014
  • Magnetic levitation systems using the attraction force of electromagnets have many constraints according to the variation of air gap and the nonlinearity of electromagnetic force and inductances. As a result of these constraints, the nonlinear control of a magnetic levitation system has been improved by the latest advanced processors and accurate measurement system which can overcome problems such as many constraints and nonlinearity. This paper concentrates on the modeling of a nonlinear magnetic levitation system and an application of an exponential reaching law based sliding mode controller using the exponential reaching law which is one of the most robust controllers against external unexpected disturbances or parameter fluctuations. Controllability of a magnetic levitation system using the sliding mode control algorithm and robustness against parameter fluctuations have been verified through the experimental results.

회전자와 고정자 저항 변동에 영향을 받지 않는 유도전동기의 새로운 벡터제어 기법 (A new vector control approach for induction motor without influence of rotor resistance and stator resistance variation)

  • 변윤섭;백종현;왕종배;박현준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2371-2373
    • /
    • 2000
  • This paper presents a new vector control scheme for induction motor. An exact knowledge of the rotor flux position is essential for a high-performance vector control. The position of the rotor flux is measured in the direct scheme and estimated in the indirect schemes. Since the estimation of the flux position requires a priori knowledge of the induction motor parameters, the indirect schemes are machine parameter dependent. The rotor and stator resistance among the parameters change with temperature. Variations in the parameters of induction machine cause deterioration of both the steady state and dynamic operation of the induction motor drive. Several methods have presented to minimize the consequences of parameter sensitivity in indirect scheme. In this paper, new estimation scheme of rotor flux position is presented to eliminate sensitivity due to variation in the resistance. The simulation is executed to verify the proposed vector control performance and to compare its performance with that of indirect vector control.

  • PDF

Torque Ripple Reduction in Direct Torque Control of Five-Phase Induction Motor Using Fuzzy Controller with Optimized Voltage Vector Selection Strategy

  • Shin, Hye Ung;Kang, Seong Yun;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1177-1186
    • /
    • 2017
  • This paper presents a torque ripple reduction method of direct torque control (DTC) using fuzzy controller with optimal selection strategy of voltage vectors in a five-phase induction motor. The conventional DTC method has some drawbacks. First, switching frequency changes according to the hysteresis bands and motor's speed. Second, the torque ripple is rapidly increased in long control period. In order to solve these problems, some/most papers have proposed torque ripple reduction methods by using the optimal duty ratio of the non-zero voltage vector. However, these methods are complicated in accordance with the parameter. If this drawback is eliminated, the torque ripple can be reduced compared with conventional method. In addition, the DTC can be simply controlled without the use of the parameter. Therefore, the proposed algorithm is changing the voltage vector insertion time by using the designed fuzzy controller. Also, the optimized voltage vector selection method is used in accordance with the torque error. Simulation and experimental results show effectiveness of the proposed control algorithm.

DC 서보모터의 속도제어를 위한 GAs의 PID 계수조정에 관한 연구 (A Study on the PID Order tuning by GAs for Velocity Control of DC Servo Motor)

  • 박재형;김성곤;이상관
    • 한국정보통신학회논문지
    • /
    • 제9권8호
    • /
    • pp.1840-1846
    • /
    • 2005
  • 본 논문에서는 유전 알고리즘을 사용하여 PID의 각 계수를 자동적으로 조정함으로써 DC 서보모터의 속도제어에 적용하였다. DC 서보모터는 산업현장 및 로봇분야에 널리 적용되고 있으며 적절한 제어성능을 얻기 위하여 많은 시행착오에 의한 다양한 제어방법이 사용되고 있다. 그러나 산업현장, 플랜트의 변화 및 외란에 강인한 제어알고리즘을 선택하기가 매우 어려우며 많은 시행착오를 통하여 원하는 계수값을 얻어 낼 수 있다. 따라서 본 논문에서는 이러한 문제점을 해결하고 DC 서보모터의 제어성능을 향상시키기 위하여 유전 알고리즘을 적용함으로써 우수한 응답특성을 얻을 수 있었다.

모델 파라미터 없는 쿠프만 연산자 기반의 영구자석 동기전동기의 속도제어 (Model Parameter-free Velocity Control of Permanent Magnet Synchronous Motor based on Koopman Operator)

  • 김준식;우희진;최영진
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.308-313
    • /
    • 2022
  • This paper proposes a velocity control method for a permanent magnet synchronous motor (PMSM) based on the Koopman operator that does not require model parameter information except for pole-pair of the motor and external load. First, the Koopman operator is derived using observable functions and observation data. Then, the desired q-axis current corresponding to the desired velocity is generated using the relationship between the continuous-time Koopman operator and the dynamics of PMSM. Also, the dynamic equation of PMSM is expressed as a linear form in observable space using the discrete-time Koopman operator. Finally, it is applied to the linear quadratic regulator (LQR) to derive the final form of control input. To verify the proposed method, the conventional cascade PI controller and the LQR controller configured with the existing technique are compared with the proposed method in the viewpoint of q-axis current generation and velocity tracking performance in an environment with noise and external load.