• Title/Summary/Keyword: MotionFree

Search Result 1,371, Processing Time 0.029 seconds

The Preparation for Sintered Body of $CeO_2$ Based Complex Oxide in Low Temperature Solid Oxide Fuel Cells Using Colloidal Surface Chemistry (콜로이드 계면화학을 이용한 저온형 고체전해질용 $CeO_2$계 복합 산화물의 소결체 제조)

  • 황용신;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.705-712
    • /
    • 2000
  • In this study, the dispersion stability of CeO2 based complex oxide was studied, and density, porosity, and microstructure of green body were investigated using colloid surface chemistry to manufacture the Gd2O3 doped CeO2 solid electrolyte in an aqueous system. To prepare the stable slurry for slip casting, the dispersion stability was examined as a function of pH using ESA(electrokinetic sonic anplitude) analysis. The dynamic mobility of particles was enhanced with anionic and cationic dispersant were added the amount of 0.5wt% respectively, but pH value in slurries didn't move to below 6.0 because of the influence of dopants. This phenomenon also appeared in the CeO2-Y2O3 and CeO2-Sm2O3 systems, so it could be inferred that rare earth dopants such as Gd2O3, Sm2O3 and Y2O3 not only have the similar motion with changing pH in an aqueous system but also can be dissolved in the range of pH 6.0∼6.5. In CeO2-Gd2O3 system, when the anionic dispersant was added the amount of 0.5wt% and pH value in slurries was fixed at 9.5, the green body density was 4.07g/㎤, and the relative density of sintered body was 95.2%. It could be inferred from XRD analysis that Gd3+ substituted into Ce4+ site because there was no free Gd2O3 peak.

  • PDF

An estimation of implied volatility for KOSPI200 option (KOSPI200 옵션의 내재변동성 추정)

  • Choi, Jieun;Lee, Jang Taek
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.513-522
    • /
    • 2014
  • Using the assumption that the price of a stock follows a geometric Brownian motion with constant volatility, Black and Scholes (BS) derived a formula that gives the price of a European call option on the stock as a function of the stock price, the strike price, the time to maturity, the risk-free interest rate, the dividend rate paid by the stock, and the volatility of the stock's return. However, implied volatilities of BS method tend to depend on the stock prices and the time to maturity in practice. To address this shortcoming, we estimate the implied volatility function as a function of the strike priceand the time to maturity for data consisting of the daily prices for KOSPI200 call options from January 2007 to May 2009 using support vector regression (SVR), the multiple additive regression trees (MART) algorithm, and ordinary least squaress (OLS) regression. In conclusion, use of MART or SVR in the BS pricing model reduced both RMSE and MAE, compared to the OLS-based BS pricing model.

Seismic response analysis of layered soils considering effect of surcharge mass using HFTD approach. Part Ι: basic formulation and linear HFTD

  • Saffarian, Mohammad A.;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.517-530
    • /
    • 2014
  • Seismic ground response analysis is one of the most important issues in geotechnical earthquake engineering. Conventional seismic site response and free field analysis of layered soils does not consider the effect of surcharge mass which may be present on the top layer. Surcharge mass may develop extra inertial force to the soil and, hence, significantly affect on the results of seismic ground response analysis. Methods of analysis of ground response may also be categorized into time domain and frequency domain concepts. Simplicity in developing analytical relations and accuracy in considering soil dynamic properties dependency to loading frequency are benefits of frequency domain analysis. In this part of the paper, seismic ground response is analyzed using transfer function method for soil layers considering surcharge mass on the top layer. Equation of motion, wave equation, is solved using amended boundary conditions which effectively take the impact of surcharge mass into account. A computer program is developed by MATLAB software based on the solution method developed for wave equation. Layered soils subjected to earthquake loading were numerically studied and solved especially by the computer program developed in this research. Results obtained were compared with those given by DEEP SOIL computer program. Such comparison showed the accuracy of the program developed in this study. Also in this part, the effects of geometrical and mechanical properties of soil layers and especially the impact of surcharge mass on transfer function are investigated using the current approach and the program developed. The efficiency and accuracy of the method developed here is shown through some worked examples and through comparison of the results obtained here with those given by other approaches. Discussions on the results obtained are presented throughout in this part.

Effects of Curved Pipe Geometry and Inside Fluid Flow on the Vibrational Characteristics of Pipe Systems (배관의 형상 및 내부유체 유동이 배관계의 진동특성에 미치는 영향)

  • Choi, Myung-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.58-64
    • /
    • 2016
  • Vibrational characteristics of curved pipe structures are investigated with respect to the change of inside flow velocities. Based upon the Hamilton's principle, the equations of motions are derived, and the finite element equation is constructed to solve the frequency equation for curved pipe structures. When the initial tension is neglected in cured pipes, the natural frequencies are reduced as flow velocity increases, and the rapid decreases of the natural frequencies take place. However, when the initial tension is taken into account, the natural frequencies are not changed with the change of the flow velocity. In free vibrational simulation of pipe systems, it is necessary to calculate the initial force due to the velocity and the pressure of the fluid flow from the equilibrium. The force should be included in the equation of motion of the systems to get more accurate natural frequencies. The mechanical properties like stiffness or the location of pipe support need to be changed to avoid resonance. The natural frequencies are to be isolated from the frequency range of dominant vibration modes. The angles of elbows do not affect the change of the fundamental natural frequency, but affect the change of the third or higher natural frequencies.

Vibration Reduction of Composite Helicopter Blades using Active Twist Control Concept (능동 비틀림 제어기법을 이용한 복합재료 로터 블레이드의 진동 억제)

  • Pawar, Prashant M.;You, Young-Hyun;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.139-146
    • /
    • 2009
  • In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. The piezoceramic shear actuation mechanism along with elastic couplings of composite blades is used for vibration reduction. The rotor blades are modeled as composite box-beams with actuator layers bonded on the outer surfaces of the thin-walled section. The governing equations of motion for helicopter blades are obtained using Hamilton's principle. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. Various rotor configurations with different elastic couplings with appropriate actuator placement are used to investigate the hub vibration characteristics. Numerical results show that a substantial reduction of $N_b$/rev hub vibration can be achieved using the optimal control algorithm.

Numerical Simulation far the Non-Spherical Aggregation of Charged Particles (하전 입자의 비구형 응집 성장에 대한 수치적 연구)

  • Park, Hyeong-Ho;Kim, Sang-Su;Jang, Hyeok-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.227-237
    • /
    • 2002
  • A numerical technique for simulating the aggregation of charged particles was presented with a Brownian dynamic simulation in the free molecular regime. The Langevin equation was used for tracking each particle making up an aggregate. A periodic boundary condition was used for calculation of the aggregation process in each cell with 500 primary particles of 16 nm in diameter. We considered the thermal force and the electrostatic force for the calculation of the particle motion. The electrostatic force on a particle in the simulation cell was considered as a sum of electrostatic forces from other particles in the original cell and its replicate cells. We assumed that the electric charges accumulated on an aggregate were located on its center of mass, and aggregates were only charged with pre-charged primary particles. The morphological shape of aggregates was described in terms of the fractal dimension. In the simulation, the fractal dimension for the uncharged aggregate was D$\_$f/ = 1.761. The fractal dimension changed slightly for the various amounts of bipolar charge. However, in case of unipolar charge, the fractal dimension decreased from 1.641 to 1.537 with the increase of the average number of charges on the particles from 0.2 to 0.3 in initial states. In the bipolar charge state, the average sizes of aggregates were larger than that of the uncharged state in the early and middle stages of aggregation process, but were almost the same as the case of the uncharged state in the final stage. On the other hand, in the unipolar charge state, the average size of aggregates and the dispersion of particle volume decreased with the increasing of the charge quantities.

Numerical Analysis of Simultaneous Cooling Process of Upper and Lower Side of Running Hot Steel Strip (주행하는 고온 강재의 상하부 동시 냉각 과정 수치해석)

  • Kwon, Myeon Jae;Park, Il Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1051-1056
    • /
    • 2014
  • After hot rolling, a high-temperature steel plate with a temperature higher than $800^{\circ}C$ is rapidly cooled by multiple circular water jets. In this cooling process, because the temperature of the steel plate is much higher than the boiling point of the cooling water, film-boiling heat transfer occurs and a very thin steam layer forms between the plate surface and the cooling water. The steam layer acts as a thermal resistance that prevents heat transfer between the cooling water and the steel plate. In addition to the film-boiling heat transfer, complex physical phenomena such as the free-surface flow of residual water that accumulated on the material and the material's high-speed motion also occur in the cooling process. In this study, the simultaneous cooling process of the upper and lower sides of a running hot steel strip is investigated using a three-dimensional numerical model and the cooling performances and characteristics of the upper-side cooling and lower-side cooling are compared.

An Analysis on the Present State of Korean Professional Cheerleader's Uniform Design (국내 프로 치어리더 유니폼 디자인 현황분석)

  • Bae, Soojeong
    • Journal of Fashion Business
    • /
    • v.17 no.2
    • /
    • pp.46-62
    • /
    • 2013
  • This thesis aims to provide basic resources for the development of various uniform designs of cheerleaders by investigating the currently favoured uniform designs. The 13 professional cheerleader teams were existed among the 25 professional sports teams-9 baseball, 10 basketball and 6 volleyball teams. In each sports teams, four cheerleader's uniform were chosen and evaluated in terms of the cheerleader uniform design by analyzing the forms, colors, decorations and accessories. The result shows that the common kinds of design representing the symbolic color and the emblem were generally prevalent, instead of particular types of uniform design and subject in accordance with different kinds of the professional baseball, basketball and volleyball respectively. Throughout all the kinds of the sports, the combination of the sleeveless top and hot-pants were most frequently observed. In case of the skirts, the mini flare, wrap, and pleats skirts were the most prevalent, because it gave free to motion for cheerleading. The one-piece style were rather infrequent, comparing with the two-pieces, with the hourglass and fitted silhouette the most frequent type, and all those were mini in length. The sleeve in top were generally absent or short, however the bare top style was never found that the top would have a risk of being taken off downwardly during cheerleading. The accessories and the cheering tools were not so much used. The cap and headdresses were not many in kinds. The pompom, megaphone, tube stick, towel, umbrella and musical instruments would not be sufficient to play a role of tools for cheering, which suggests that the rather advanced tools or instruments for cheering in the sports need to be developed, not alone the uniform design.

Investigation of Sensor Models for Precise Geolocation of GOES-9 Images (GOES-9 영상의 정밀기하보정을 위한 여러 센서모델 분석)

  • Hur, Dong-Seok;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.285-294
    • /
    • 2006
  • A numerical formula that presents relationship between a point of a satellite image and its ground position is called a sensor model. For precise geolocation of satellite images, we need an error-free sensor model. However, the sensor model based on GOES ephemeris data has some error, in particular after Image Motion Compensation (IMC) mechanism has been turned off. To solve this problem, we investigated three sensor models: collinearity model, direct linear transform (DLT) model and orbit-based model. We applied matching between GOES images and global coastline database and used successful results as control points. With control points we improved the initial image geolocation accuracy using the three models. We compared results from three sensor models. As a result, we showed that the orbit-based model is a suitable sensor model for precise geolocation of GOES-9 Images.

Characteristics of EMR emitted by coal and rock with prefabricated cracks under uniaxial compression

  • Song, Dazhao;You, Qiuju;Wang, Enyuan;Song, Xiaoyan;Li, Zhonghui;Qiu, Liming;Wang, Sida
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.49-60
    • /
    • 2019
  • Crack instability propagation during coal and rock mass failure is the main reason for electromagnetic radiation (EMR) generation. However, original cracks on coal and rock mass are hard to study, making it complex to reveal EMR laws and mechanisms. In this paper, we prefabricated cracks of different inclinations in coal and rock samples as the analogues of the native cracks, carried out uniaxial compression experiments using these coal and rock samples, explored, the effects of the prefabricated cracks on EMR laws, and verified these laws by measuring the surface potential signals. The results show that prefabricated cracks are the main factor leading to the failure of coal and rock samples. When the inclination between the prefabricated crack and axial stress is smaller, the wing cracks occur first from the two tips of the prefabricated crack and expand to shear cracks or coplanar secondary cracks whose advance directions are coplanar or nearly coplanar with the prefabricated crack's direction. The sample failure is mainly due to the composited tensile and shear destructions of the wing cracks. When the inclination becomes bigger, the wing cracks appear at the early stage, extend to the direction of the maximum principal stress, and eventually run through both ends of the sample, resulting in the sample's tensile failure. The effect of prefabricated cracks of different inclinations on electromagnetic (EM) signals is different. For samples with prefabricated cracks of smaller inclination, EMR is mainly generated due to the variable motion of free charges generated due to crushing, friction, and slippage between the crack walls. For samples with larger inclination, EMR is generated due to friction and slippage in between the crack walls as well as the charge separation caused by tensile extension at the cracks' tips before sample failure. These conclusions are further verified by the surface potential distribution during the loading process.