DOI QR코드

DOI QR Code

Numerical Analysis of Simultaneous Cooling Process of Upper and Lower Side of Running Hot Steel Strip

주행하는 고온 강재의 상하부 동시 냉각 과정 수치해석

  • Kwon, Myeon Jae (School of Mechanical Engineering, Kyungpook Nat'l Univ.) ;
  • Park, Il Seouk (School of Mechanical Engineering, Kyungpook Nat'l Univ.)
  • 권면재 (경북대학교 기계공학부) ;
  • 박일석 (경북대학교 기계공학부)
  • Received : 2014.05.21
  • Accepted : 2014.08.13
  • Published : 2014.12.01

Abstract

After hot rolling, a high-temperature steel plate with a temperature higher than $800^{\circ}C$ is rapidly cooled by multiple circular water jets. In this cooling process, because the temperature of the steel plate is much higher than the boiling point of the cooling water, film-boiling heat transfer occurs and a very thin steam layer forms between the plate surface and the cooling water. The steam layer acts as a thermal resistance that prevents heat transfer between the cooling water and the steel plate. In addition to the film-boiling heat transfer, complex physical phenomena such as the free-surface flow of residual water that accumulated on the material and the material's high-speed motion also occur in the cooling process. In this study, the simultaneous cooling process of the upper and lower sides of a running hot steel strip is investigated using a three-dimensional numerical model and the cooling performances and characteristics of the upper-side cooling and lower-side cooling are compared.

열간 압연을 거친 $800^{\circ}C$ 이상의 고온 철강 판재는 일반적으로 다중 봉상 수분류(multiple circular water jets)에 의해서 급속 냉각된다. 이 과정은 소재의 온도가 냉각수의 끓는점보다 훨씬 높기 때문에 소재 표면과 냉각수 사이에 막비등 열전달 현상이 발생하며 소재 표면에 매우 얇은 증기층이 형성되며, 이 증기층은 소재와 냉각수의 열교환을 방해하는 중요한 열저항으로 작용한다. 본 문제에는 비등 열전달 이외에도 소재 표면에 쌓이는 체류수의 자유표면 유동, 소재의 고속 주행 등 복잡한 물리현상들이 복합적으로 작용하고 있다. 본 논문에서는 이 모든 물리현상들을 동시에 고려할 수 있는 해석 절차를 적용하여 일정한 속도로 주행하는 고온 철강 판재의 상하부 동시 냉각 과정을 3 차원 수치해석 하였으며, 소재 상부 및 하부 면의 냉각 특성을 비교하였다.

Keywords

References

  1. Wolf, D. H., Incropera, F. P. and Viskanta, R., 1993, "Jet Impingement Boiling," Advance in heat transfer, Vol. 23, No. 1, pp. 1-132.
  2. Park, I. S., 2011, "Numerical Analysis for Film Boiling Heat Transfer of a Moving Hot Steel Plate," ISIJ International, Vol. 51, No. 5, pp. 743-747. https://doi.org/10.2355/isijinternational.51.743
  3. Chen, S. J., Kothari, J. and Tseng, A. A., 1991, "Cooling of a Moving Plate with an Impinging Circular Water Jet," Experimental thermal and fluid science, Vol. 4, No. 3, pp. 343-353. https://doi.org/10.1016/0894-1777(91)90051-R
  4. Kwon, M. J. and Park, I. S., 2013, "Numerical Study of the Effect of Nozzle Arrangement on Cooling Process in Running Hot Steel Strip after Hot Rolling," ISIJ International, Vol. 53, No. 6, pp. 1042-1046. https://doi.org/10.2355/isijinternational.53.1042
  5. Zhang, D. H., Wang, B. X., Zhou, N., Yu, M. and Wang, J., 2008, "Cooling Efficiency of Laminar Cooling System for Plate Mill," Journal of Iron and Steel Research, International, Vol. 15, No. 5, pp. 24-28.
  6. Nakanishi, S., Ishigai, S., Ochi, T. and Morita, I., 1980, "Film Boiling Heat Transfer of Impinging Plane Water Jet," JSME Ser. B, Vol. 46, pp. 955-961. https://doi.org/10.1299/kikaib.46.955
  7. Kim, K. M. and Son, G. H., 2013, "Numerical Analysis of Film Boiling in Liquid Jet Impingement," Numerical heat Transfer, Part A: Applications, Vol. 64, No. 9, pp. 695-709. https://doi.org/10.1080/10407782.2013.798220
  8. Xu, F. and Gadala, M. S., 2006, "Heat Transfer Behavior in the Impingement Zone under Circular Water Jet," International Journal of heat and mass transfer, Vol. 49, No. 21, pp. 3785-3799 https://doi.org/10.1016/j.ijheatmasstransfer.2006.03.034
  9. Robidou, H., Auracher, H., Gardin, P. and Lebouche, M., 2002, "Controlled Cooling of a Hot Plate with a Water Jet," Experimental Thermal and Fluid Science, Vol. 26, No. 2, pp. 123-129. https://doi.org/10.1016/S0894-1777(02)00118-8