• Title/Summary/Keyword: Motion vector prediction

Search Result 151, Processing Time 0.023 seconds

Adaptive Pattern Search for Fast Block-Matching Motion Estimation (고속 블록 정합 움직임 추정을 위한 적응적 패턴 탐색)

  • Kwak, Sung-Keun
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.9
    • /
    • pp.987-992
    • /
    • 2004
  • There is the temporal correlation of the video sequence between the motion vector of current block and the motion vector of previous block. In this paper, we propose the improved diamond search pattern using an motion vector prediction candidate search point by the predicted motion information from the same block of the previous frame. Simulation results show that PSNR(Peak-to-Signal Noise Ratio) values are improves as high as high as 14~24% in terms of average number of search point per motion vector estimation and improved about 0.02~0.37dB on an average except the full search(FS) algorithm.

  • PDF

A Prediction Search Algorithm in Video Coding by using Neighboring-Block Motion Vectors (비디오 코딩을 위한 인접블록 움직임 벡터를 이용한 예측 탐색 알고리즘)

  • Kwak, Sung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3697-3705
    • /
    • 2011
  • There is the temporal correlation of the video sequence between the motion vector of current block and the motion vector of previous block. In this paper, we propose a new prediction search algorithm for block matching using the temporal and spatial correlation of the video sequence and local statistics of neighboring motion vectors. The proposed ANBA(Adaptive Neighboring-Block Search Algorithm) determines the location of a better starting point for the search of an exact motion vector using the point of the smallest SAD(Sum of Absolute Difference) value by the predicted motion vectors of neighboring blocks around the same block of the previous frame and the current frame and use a previous motion vector. Simulation results show that PSNR(Peak-to-Signal Noise Ratio) values are improved up to the 1.06dB as depend on the video sequences and improved about 0.01~0.64dB over MVFAST and PMVFAST.

A NOVEL FUZZY SEARCH ALGORITHM FOR BLOCK MOTION ESTIMATION

  • Chen, Pei-Yin;Jou, Jer-Min;Sun, Jian-Ming
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.750-755
    • /
    • 1998
  • Due to the temporal spatial correlation of the image sequence, the motion vector of a block is highly related to the motion vectors of its adjacent blocks in the same image frame. If we can obtain useful and enough information from the adjacent motion vectors, the total number of search points used to find the motion vector of the block may be reduced significantly. Using that idea, an efficient fuzzy prediction search (FPS) algorithm for block motion estimation is proposed in this paper. Based on the fuzzy inference process, the FPS can determine the motion vectors of image blocks quickly and correctly.

  • PDF

Object-based Stereo Sequence Coding using Disparity and Motion Vector Relationship (변이-움직임 벡터의 상관관계를 이용한 객체기반 스테레오 동영상 부호화)

  • 박찬희;손광훈
    • Journal of Broadcast Engineering
    • /
    • v.7 no.3
    • /
    • pp.238-247
    • /
    • 2002
  • In this paper, we propose an object-based stereo sequence compression technique using disparity-motion vector relationship. The proposed method uses the coherence of motion vectors and disparity vectors in the left and right Image sequences. After two motion vectors and one disparity vector ate computed using FBMA(Fixed Block Matching Algorithm), the disparity vector of the current stereoscopic pall is computed by disparity-motion vector relationship with vectors which are previously estimated. Moreover, a vector regularization technique is applied in order to obtain reliable vectors. For an object-based coding. the object is defined and coded in terms of layers of VOP such as in MPEG-4. we present a method using disparity and motion vector relationship for extending two-frame compensation into three-frame compensation method for prediction coding of B-VOP. The proposed algorithm shows a high performance when comparing with a conventional method.

Whole Frame Error Concealment with an Adaptive PU-based Motion Vector Extrapolation and Boundary Matching (적응적인 PU 기반 움직임 벡터 외삽과 경계 정합을 통한 프레임 전체 오류 은닉 방법에 관한 연구)

  • Kim, Seounghwi;Lee, Dongkyu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.20 no.4
    • /
    • pp.533-544
    • /
    • 2015
  • Recently, most of the video services are usually transmitted in wireless networks. In networks environment, a packet of video is likely to be lost during transmission. For this reason, this paper proposes a new Error Concealment (EC) algorithm. For High Efficiency Video Coding (HEVC) bitstreams, the proposed algorithm includes Adaptive Prediction Unit-based Motion Vector Extrapolation (APMVE) and Boundary Matching (BM) algorithm, which employs both the temporal and spatial correlation. APMVE adaptively decides a Error Concealment Basic Unit (ECBU) by using the PU information of the previous frame and BM employing the spatial correlation is applied to only unreliable blocks. Simulation results show that the proposed algorithm provides the higher subjective quality by reducing blocking artifacts which appear in other existing algorithms.

Digital Video Scrambling Methods using Motion Vector and Intra Prediction Mode (움직임 벡터와 인트라 예측 모드를 이용한 디지털 비디오 스크램블링 방법)

  • Ahn, Jin-Haeng;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.133-142
    • /
    • 2005
  • In this paper, two digital video scrambling methods are proposed as simple means of the digital content protection techniques. One is inter block scrambling using motion vector, the other is intra block scrambling using intra prediction mode. The proposed inter block scrambling method distorts the original sequences by swapping horizontal and vertical components of motion vector. This method can be applied on most common video coding techniques such as MPEG-1, 2, 4, H.264, etc. The proposed intra block scrambling method distorts the original sequences by modifying intra prediction mode that is property of H.254 video coding technique. Both methods do not cause my bit rate increase after scrambling. Moreover, they have low complexity because they need only simple operation like XOR. Especially, the proposed intra block scrambling does not distort inter blocks directly. But inter blocks are distorted by error propagation effect as much as intra blocks. This paper introduces two new digital video scrambling method and verifies its effectiveness through simulation.

New Motion Vector Prediction for Efficient H.264/AVC Full Pixel Motion Estimation (H.264/AVC의 효율적인 전 영역 움직임 추정을 위한 새로운 움직임 벡터 예측 방법 제안)

  • Choi, Jin-Ha;Lee, Won-Jae;Kim, Jae-Seok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.3
    • /
    • pp.70-79
    • /
    • 2007
  • H.264/AVC has many repeated computation for motion estimation. Because of that, it takes much time to encode and it is very hard to implement into a real-time encoder. Many fast algorithms were proposed to reduce computation time but encoding quality couldn't be qualified. In this paper we proposed a new motion vector prediction method for efficient and fast full search H.264/AVC motion estimation. We proposed independent motion vector prediction and SAD share for motion estimation. Using our algorithm, motion estimation reduce calculation complexity 80% and less distortion of image (less PSNR drop) than previous full search scheme. We simulated our proposed method. Maximum Y PSNR drop is about 0.04 dB and average bit increasing is about 0.6%.

Efficient Coding of Motion Vector Predictor using Phased-in Code (Phased-in 코드를 이용한 움직임 벡터 예측기의 효율적인 부호화 방법)

  • Moon, Ji-Hee;Choi, Jung-Ah;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.15 no.3
    • /
    • pp.426-433
    • /
    • 2010
  • The H.264/AVC video coding standard performs inter prediction using variable block sizes to improve coding efficiency. Since we predict not only the motion of homogeneous regions but also the motion of non-homogeneous regions accurately using variable block sizes, we can reduce residual information effectively. However, each motion vector should be transmitted to the decoder. In low bit rate environments, motion vector information takes approximately 40% of the total bitstream. Thus, motion vector competition was proposed to reduce the amount of motion vector information. Since the size of the motion vector difference is reduced by motion vector competition, it requires only a small number of bits for motion vector information. However, we need to send the corresponding index of the best motion vector predictor for decoding. In this paper, we propose a new codeword table based on the phased-in code to encode the index of motion vector predictor efficiently. Experimental results show that the proposed algorithm reduces the average bit rate by 7.24% for similar PSNR values, and it improves the average image quality by 0.36dB at similar bit rates.

An Efficient coding Method for Motion Prediction Flag in the Scalable Video Encoding Standard (스케일러블 동영상 부호화 표준에서 움직임 예측 플래그를 위한 효율적인 부호화 방식)

  • Moon, Yong-Ho;Eom, Il-Kyu;Ha, Seok-Wun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.2
    • /
    • pp.81-86
    • /
    • 2014
  • In the scalable video coding standard, inter-layer prediction based on the coding information of the base layer was adopted to increase the coding performance. This prediction tool results in new syntax elements called motion_prediction_flag (mPF) and residul_prediction_flag(rPF), which are carried to notify the motion vector predictor (MVP) and reference block required in the motion compensation of the decoder. In this paper, an efficient coding method for mPF is proposed to enhance coding efficiency of the salable video coding standard. Through an analysis on the transmission of mPF based on the relationship between the MVPs, we discover the conditions where mPF is unnecessary at the decoder and suggest a modified rate-distortion (RD) cost function to make RD optimization more effective. Simulation results show that the proposed method offers BD rate savings of approximately 1.4%, compared with the conventional SVC standard.

Fractal Depth Map Sequence Coding Algorithm with Motion-vector-field-based Motion Estimation

  • Zhu, Shiping;Zhao, Dongyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.242-259
    • /
    • 2015
  • Three-dimensional video coding is one of the main challenges restricting the widespread applications of 3D video and free viewpoint video. In this paper, a novel fractal coding algorithm with motion-vector-field-based motion estimation for depth map sequence is proposed. We firstly add pre-search restriction to rule the improper domain blocks out of the matching search process so that the number of blocks involved in the search process can be restricted to a smaller size. Some improvements for motion estimation including initial search point prediction, threshold transition condition and early termination condition are made based on the feature of fractal coding. The motion-vector-field-based adaptive hexagon search algorithm on the basis of center-biased distribution characteristics of depth motion vector is proposed to accelerate the search. Experimental results show that the proposed algorithm can reach optimum levels of quality and save the coding time. The PSNR of synthesized view is increased by 0.56 dB with 36.97% bit rate decrease on average compared with H.264 Full Search. And the depth encoding time is saved by up to 66.47%. Moreover, the proposed fractal depth map sequence codec outperforms the recent alternative codecs by improving the H.264/AVC, especially in much bitrate saving and encoding time reduction.