• Title/Summary/Keyword: Motion uncertainty

Search Result 215, Processing Time 0.019 seconds

Network Based Robot Simulator Implementing Uncertainties in Robot Motion and Sensing (로봇의 이동 및 센싱 불확실성이 고려된 네트워크 기반 로봇 시뮬레이션 프로그램)

  • Seo, Dong-Jin;Ko, Nak-Yong;Jung, Se-Woong;Lee, Jong-Bae
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.1
    • /
    • pp.23-31
    • /
    • 2010
  • This paper suggests a multiple robot simulator which considers the uncertainties in robot motion and sensing. A mobile robot moves with errors due to some kinds of uncertainties from actuators, wheels, electrical components, environments. In addition, sensors attached to a mobile robot can't make accurate output information because of uncertainties of the sensor itself and environment. Uncertainties in robot motion and sensing leads researchers find difficulty in building mobile robot navigation algorithms. Generally, a robot algorithm without considering unexpected uncertainties fails to control its action in a real working environment and it leads to some troubles and damages. Thus, the authors propose a simulator model which includes robot motion and sensing uncertainties to help making robust algorithms. Sensor uncertainties are applied in range sensors which are widely used in mobile robot localization, obstacle detection, and map building. The paper shows performances of the proposed simulator by comparing it with a simulator without any uncertainty.

Design and Performance Evaluation of Controller for Unstable Motion of Underwater Vehicle after Water Entry (수중운동체 입수 초기의 불안정 거동에 대한 제어기 설계 및 성능평가)

  • Park, Yeong-Il;Ryu, Dong-Ki;Kim, Sam-Soo;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.166-175
    • /
    • 1999
  • This paper describes a design and performance evaluation of robust controller which overrides unstable motion and pulls out quickly after water entry of underwater vehicle dropped from aircraft or surface ship. We use 6-DOF equation for model of motions and assume parameter uncertainty to reflect the difference of real motion from modelled motion equation. we represent a nonlinear system with uncertainty as Takagi and Sugeno's(T-S) fuzzy models and design controller stabilizing them. The fuzzy controller utilizes the concept of so-called parallel distributed compensation (PDC). Finally, we confirm stability and performance of the controller through computer simulation and hardware in the loop simulation (HILS).

  • PDF

Trajectory Recovery Using Goal-directed Tracking (목표-지향 추적 기법을 이용한 궤적 복원 방법)

  • Oh, Seon Ho;Jung, Soon Ki
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.5
    • /
    • pp.575-582
    • /
    • 2015
  • Obtaining the complete trajectory of the object is a very important task in computer vision applications, such as video surveillance. Previous studies to recover the trajectory between two disconnected trajectory segments, however, do not takes into account the object's motion characteristics and uncertainty of trajectory segments. In this paper, we present a novel approach to recover the trajectory between two disjoint but associated trajectory segments, called goal-directed tracking. To incorporate the object's motion characteristics and uncertainty, the goal-directed state equation is first introduced. Then the goal-directed tracking framework is constructed by integrating the equation to the object tracking and trajectory linking process pipeline. Evaluation on challenging dataset demonstrates that proposed method can accurately recover the missing trajectory between two disconnected trajectory segments as well as appropriately constrain a motion of the object to the its goal(or the target state) with uncertainty.

$H^{\inf}$ controller design for submerged vehicle under model uncertainty and sea wave disturbances (모델 불확실성과 해파외란을 고려한 고려한 몰수체의 $H^{\inf}$ 제어기 설계)

  • 이재명;류동기;이갑래;박홍배
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.17-26
    • /
    • 1996
  • A submerged vehicle which is a nonlinear multivariable system must be designed to be roubst against inner-outer perturbations and hydrodynamic disturbances induces maneuvering operation. But a practical design of motion controller is limited by both mathematical modeling error and linearization errors. Performance of a motion controller based on traditional design method is very poor when the vehicle motion is under wave force distrubacnes near sea surface. Therefore, this ppaer proposes a design method of $^{\infty}$ controller under model uncertainty and sea wave disturbances. performance of the controllers by both computer simulation and HILS (hardwave in the loop simulation) shows that $H^{\infty}$ controller is more robust than PID controller under model uncertainty and high sea state...

  • PDF

Localization of an Underwater Robot Using Acoustic Signal (음향 신호를 이용한 수중로봇의 위치추정)

  • Kim, Tae Gyun;Ko, Nak Yong
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.4
    • /
    • pp.231-242
    • /
    • 2012
  • This paper proposes particle filter(PF) method using acoustic signal for localization of an underwater robot. The method uses time of arrival(TOA) or time difference of arrival(TDOA) of acoustic signals from beacons whose locations are known. An experiment in towing tank uses TOA information. Simulation uses TDOA information and it reveals dependency of the localization performance on the uncertainty of robot motion and senor data. Also, comparison of the PF method with the least squares method of spherical interpolation(SI) and spherical intersection(SX) is provided. Since PF uses TOA or TDOA which comes from measurement of external information as well as internal motion information, its estimation is more accurate and robust to the sensor and motion uncertainty than the least squares methods.

Optimal design of a flexure hinge-based XY AFM scanner for minimizing Abbe errors and the evaluation of pitch measuring uncertainty of a nano-accuracy AFM system (XY 스캐너의 아베 오차 최소화를 위한 최적 설계 및 나노 정밀도의 원자 현미경 피치 측정 불확도 평가)

  • Kim Dong-Min;Lee Dong-Yeon;Gweon Dae-Gab
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.96-103
    • /
    • 2006
  • To establish of standard technique of nano-length measurement in 2D plane, new AFM system has been designed. In the long range (about several tens of ${\mu}m$), measurement uncertainty is dominantly affected by the Abbe error of XY scanning stage. No linear stage is perfectly straight; in other words, every scanning stage is subject to tilting, pitch and yaw motion. In this paper, an AFM system with minimum offset of XY sensing is designed. And XY scanning stage is designed to minimize rotation angle because Abbe errors occur through the multiply of offset and rotation angle. To minimize the rotation angle optimal design has performed by maximizing the stiffness ratio of motion direction to the parasitic motion direction of each stage. This paper describes the design scheme of full AFM system, especially about XY stage. Full range of fabricated XY scanner is $100{\mu}m\times100{\mu}m$. And tilting, pitch and yaw motion are measured by autocollimator to evaluate the performance of XY stage. As a result, XY scanner can have good performance. Using this AFM system, 3um pitch specimen was measured. The uncertainty of total system has been evaluated. X and Y direction performance is different. X-direction measuring performance is better. So to evaluate only ID pitch length, X-direction scanning is preferable. Its expanded uncertainty(k=2) is $\sqrt{(3.96)^2+(4.10\times10^{-5}{\times}p)^2}$ measured length in nm.

Stochastic Model Predictive Control for Stop Maneuver of Autonomous Vehicles under Perception Uncertainty (자율주행 자동차 정지 거동에서의 인지 불확실성을 고려한 확률적 모델 예측 제어)

  • Sangyoon, Kim;Ara, Jo;Kyongsu, Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.35-42
    • /
    • 2022
  • This paper presents a stochastic model predictive control (SMPC) for stop maneuver of autonomous vehicles considering perception uncertainty of stopped vehicle. The vehicle longitudinal motion should achieve both driving comfortability and safety. The comfortable stop maneuver can be performed by mimicking acceleration profile of human driving pattern. In order to implement human-like stop motion, we propose a reference safe inter-distance and velocity model for the longitudinal control system. The SMPC is used to track the reference model which contains the position uncertainty of preceding vehicle as a chance constraint. We conduct simulation studies of deceleration scenarios against stopped vehicle in urban environment. The test results show that proposed SMPC can execute comfortable stop maneuver and guarantee safety simultaneously.

Error propagation in 2-D self-calibration algorithm (2차원 자가 보정 알고리즘에서의 불확도 전파)

  • 유승봉;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.434-437
    • /
    • 2003
  • Evaluation or the patterning accuracy of e-beam lithography machines requires a high precision inspection system that is capable of measuring the true xy-locations of fiducial marks generated by the e-beam machine under test. Fiducial marks are fabricated on a single photo mask over the entire working area in the form of equally spaced two-dimensional grids. In performing the evaluation, the principles of self-calibration enable to determine the deviations of fiducial marks from their nominal xy-locations precisely, not being affected by the motion errors of the inspection system itself. It is. however, the fact that only repeatable motion errors can be eliminated, while random motion errors encountered in probing the locations of fiducial marks are not removed. Even worse, a random error occurring from the measurement of a single mark propagates and affects in determining locations of other marks, which phenomenon in fact limits the ultimate calibration accuracy of e-beam machines. In this paper, we describe an uncertainty analysis that has been made to investigate how random errors affect the final result of self-calibration of e-beam machines when one uses an optical inspection system equipped with high-resolution microscope objectives and a precision xy-stages. The guide of uncertainty analysis recommended by the International Organization for Standardization is faithfully followed along with necessary sensitivity analysis. The uncertainty analysis reveals that among the dominant components of the patterning accuracy of e-beam lithography, the rotationally symmetrical component is most significantly affected by random errors, whose propagation becomes more severe in a cascading manner as the number of fiducial marks increases

  • PDF

Eigenstructure Assigned Sliding Mode Control for Uncertain System (불확실 시스템을 고유구조 지정 슬라이딩 모드 제어)

  • Chun, Kyung-Han;Kim, Ga-Gue;Jeon, Hea-Jin;Park, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.799-805
    • /
    • 2001
  • In this paper, we propose eigenstructure assigned sliding mode control for mismatched uncertain system. Variable structure control has the sliding mode in which the system is robust against the uncertainty and the sliding motion depends upon the sliding surface. Therefore, the surface design is one of the important problems. Also in mismatched cases, the uncertainty may affect on the sliding motion and may cause unexpected instability of the system. Thus, that should be considered, too. For robust sliding mode against the mismatched uncertainty, we suggest the design method of the sliding surface using the eigenstructure assignment, define an index as the measure of the robustness which shows the size of affordable unstructured uncertainty, and present the computation method. And also we propose the controller which can ensure the sliding mode and prove the robust stability of the proposed controller by using Lyapunov method. Finally we show the appropriateness of the proposed scheme for the mismatched uncertainty via the example.

  • PDF

Motion-based design of TMD for vibrating footbridges under uncertainty conditions

  • Jimenez-Alonso, Javier F.;Saez, Andres
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.727-740
    • /
    • 2018
  • Tuned mass dampers (TMDs) are passive damping devices widely employed to mitigate the pedestrian-induced vibrations on footbridges. The TMD design must ensure an adequate performance during the overall life-cycle of the structure. Although the TMD is initially adjusted to match the natural frequency of the vibration mode which needs to be controlled, its design must further take into account the change of the modal parameters of the footbridge due to the modification of the operational and environmental conditions. For this purpose, a motion-based design optimization method is proposed and implemented herein, aimed at ensuring the adequate behavior of footbridges under uncertainty conditions. The uncertainty associated with the variation of such modal parameters is simulated by a probabilistic approach based on the results of previous research reported in literature. The pedestrian action is modelled according to the recommendations of the Synpex guidelines. A comparison among the TMD parameters obtained considering different design criteria, design requirements and uncertainty levels is performed. To illustrate the proposed approach, a benchmark footbridge is considered. Results show both which is the most adequate design criterion to control the pedestrian-induced vibrations on the footbridge and the influence of the design requirements and the uncertainty level in the final TMD design.