• 제목/요약/키워드: Motion gradient histogram

검색결과 12건 처리시간 0.025초

모션 그래디언트 히스토그램 기반의 시공간 크기 변화에 강인한 동작 인식 (Spatial-Temporal Scale-Invariant Human Action Recognition using Motion Gradient Histogram)

  • 김광수;김태형;곽수영;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권12호
    • /
    • pp.1075-1082
    • /
    • 2007
  • 본 논문은 동영상에 등장하는 다수 사람의 동작을 검출하여 검출된 동작을 개별적으로 인식하는 방법을 제안한다. 동작이 수행되는 속도 또는 크기 변화에 강인한 인식 성능을 갖기 위해 시공간축 피라미드(Spatial-Temporal Pyramid)방식을 적용한다. 동작 표현 방식을 통계적 특성 기반의 모션 그래디언트 히스토그램(MGH:Motion Gradient Histogram)으로 선택하여 인식 과정에서 발생하는 복잡도를 최소화 하였다. 다수의 동작을 검출하기 위하여 이진 차영상을 축적한 모션 에너지 이미지(MEI: Motion Energy Image) 방법을 적용하여 효율적으로 개별적 동작 영역을 획득한다. 각 영역은 동작 표현 방법인 MGH로 나타내어지고, 크기 변화에 강인하도록 피라미드 방식을 적응하여 학습된 템플릿 MGH와 유사도를 상호 비교하여 최종 인식 결과를 얻는다. 인식 성능의 평가를 위해 10개의 동영상을 활용하여 단일 객체, 다수 객체, 속도 및 크기 변화, 기존 방식과의 비교, 기타 추가 실험 등을 실시하여 다양한 조건의 영상에서 양호한 인식 결과를 확인 할 수 있었다.

기울기 히스토그램 및 폐색 탐지를 통한 다중 보행자 추적 (Multiple Pedestrians Tracking using Histogram of Oriented Gradient and Occlusion Detection)

  • 정준용;정병만;이규원
    • 한국정보통신학회논문지
    • /
    • 제16권4호
    • /
    • pp.812-820
    • /
    • 2012
  • 본 논문에서는 지능형 감시 시스템에 부합하는 기울기 히스토그램 및 폐색 추적을 통한 다중보행자 추적 시스템을 제안한다. 먼저, 연속 영상에서 보행자의 특징을 이용하여 보행자를 검출한다. 보행자의 특징을 획득하기 위해 HOG(Histogram of Oriented Gradient)를 기반으로 기울기의 방향성을 이용한 블록별 히스토그램을 생성하고, Linear-SVM(Support Vector Machine)의 학습을 통해 보행자만을 분류한다. 다음으로 보행자의 위치정보를 이용하여 추적을 행한다. 마지막으로 추적이 끝날 경우 내용기반 검색이 가능한 움직임 궤적 디스크립터를 생성한다. 실험을 통해 제안한 방법이 기존 방법보다 빠르고 정확한 움직임 추적에 효과적임을 증명하였다.

동영상에서 MGH을 이용한 실시간 다수 동작 인식 (Real-Time Multiple Action Recognition on Video using Motion Gradient Histogram)

  • 김태형;변혜란
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.325-327
    • /
    • 2006
  • 본 논문은 모션 그래디언트 히스토그램(Motion Gradient Histogram : 이하 'MGH')을 적용하여 동영상에서 나타나는 다수 객체들의 동작 검출 및 인식을 실시간으로 구현하는 방법을 제안한다. 인식하고자 하는 대상에 대한 기본적인 템플릿 동영상들의 MGH와 일정 프레임 간격마다 동영상의 MGH를 비교하여 검출 및 인식이 이루어진다. 동시에 다수의 동작이 있는 경우 동작이 발생하는 영역을 모션 에너지 영상(Motion Energy Image : MEI) 기법으로 추출하여 해당 영역별 MGH를 구함으로써 다수 동작을 인식할 수 있도록 한다.

  • PDF

Improvement of Accuracy for Human Action Recognition by Histogram of Changing Points and Average Speed Descriptors

  • Vu, Thi Ly;Do, Trung Dung;Jin, Cheng-Bin;Li, Shengzhe;Nguyen, Van Huan;Kim, Hakil;Lee, Chongho
    • Journal of Computing Science and Engineering
    • /
    • 제9권1호
    • /
    • pp.29-38
    • /
    • 2015
  • Human action recognition has become an important research topic in computer vision area recently due to many applications in the real world, such as video surveillance, video retrieval, video analysis, and human-computer interaction. The goal of this paper is to evaluate descriptors which have recently been used in action recognition, namely Histogram of Oriented Gradient (HOG) and Histogram of Optical Flow (HOF). This paper also proposes new descriptors to represent the change of points within each part of a human body, caused by actions named as Histogram of Changing Points (HCP) and so-called Average Speed (AS) which measures the average speed of actions. The descriptors are combined to build a strong descriptor to represent human actions by modeling the information about appearance, local motion, and changes on each part of the body, as well as motion speed. The effectiveness of these new descriptors is evaluated in the experiments on KTH and Hollywood datasets.

히스토그램 균등화 기반의 효율적인 차량용 영상 보정 알고리즘 (An Efficient Vehicle Image Compensation Algorithm based on Histogram Equalization)

  • 홍성일;인치호
    • 한국산학기술학회논문지
    • /
    • 제16권3호
    • /
    • pp.2192-2200
    • /
    • 2015
  • 본 논문에서는 히스토그램 균등화 기반의 효율적인 차량용 영상 보정 알고리즘을 제안한다. 제안된 차량용 영상보정 알고리즘은 움직임 추정 및 움직임 보상을 통해 차량용 영상의 흔들림을 제거하였다. 그리고 영상을 보정하기 위해 영상을 일정 영역으로 분할하여 각각의 서브 영상에서 픽셀 값의 히스토그램을 계산하였다. 또한, 기울기를 조절하여 영상을 개선하였다. 제안된 알고리즘은 IP에 적용하여 성능 및 시간, 영상의 차이점을 평가하고, 차량용 카메라 영상의 흔들림 제거와 영상 개선을 확인하였다. 본 논문에서 제안된 차량용 영상 보정 알고리즘은 기존 차량 영상 안정화 기술과 비교하였을 때, 차량용 영상에 대한 흔들림 제거는 메모리를 사용하지 않고 실시간 처리를 했기 때문에 효율성을 입증하였다. 그리고 블록 정합을 통한 연산으로 계산 시간 감소 효과를 얻었고, 노이즈가 가장 적고 영상의 자연스러움이 더 뛰어난 복원 결과를 얻을 수 있었다.

레벨 세트와 히스토그램을 이용한 이동 물체의 추적 (Tracking of Moving Objects Using Levelset and Histogram)

  • 박수형;염동훈;고기영;김두영
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.137-140
    • /
    • 2002
  • This paper presents a new variational framework for detecting and tracking moving objects in image sequence. Motion detection is performed using Level Set Model. The original frame is used to provide th moving object boundaries Then, the detection and the tracking problem are addressed in a common framework that employs a inward-outward curve evolution function. This function is minimized using a gradient decent method.

  • PDF

Smoke Image Recognition Method Based on the optimization of SVM parameters with Improved Fruit Fly Algorithm

  • Liu, Jingwen;Tan, Junshan;Qin, Jiaohua;Xiang, Xuyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권8호
    • /
    • pp.3534-3549
    • /
    • 2020
  • The traditional method of smoke image recognition has low accuracy. For this reason, we proposed an algorithm based on the good group of IMFOA which is GMFOA to optimize the parameters of SVM. Firstly, we divide the motion region by combining the three-frame difference algorithm and the ViBe algorithm. Then, we divide it into several parts and extract the histogram of oriented gradient and volume local binary patterns of each part. Finally, we use the GMFOA to optimize the parameters of SVM and multiple kernel learning algorithms to Classify smoke images. The experimental results show that the classification ability of our method is better than other methods, and it can better adapt to the complex environmental conditions.

모션 히스토리 영상 및 기울기 방향성 히스토그램과 적출 모델을 사용한 깊이 정보 기반의 연속적인 사람 행동 인식 시스템 (Depth-Based Recognition System for Continuous Human Action Using Motion History Image and Histogram of Oriented Gradient with Spotter Model)

  • 음혁민;이희진;윤창용
    • 한국지능시스템학회논문지
    • /
    • 제26권6호
    • /
    • pp.471-476
    • /
    • 2016
  • 본 논문은 깊이 정보를 기반으로 모션 히스토리 영상 및 기울기 방향성 히스토그램과 적출 모델을 사용하여 연속적인 사람 행동들을 인식하는 시스템을 설명하고 연속적인 행동 인식 시스템에서 인식 성능을 개선하기 위해 행동 적출을 수행하는 적출 모델을 제안한다. 본 시스템의 구성은 전처리 과정, 사람 행동 및 적출 모델링 그리고 연속적인 사람 행동 인식으로 이루어져 있다. 전처리 과정에서는 영상 분할과 시공간 템플릿 기반의 특징을 추출하기 위하여 Depth-MHI-HOG 방법을 사용하였으며, 추출된 특징들은 사람 행동 및 적출 모델링 과정을 통해 시퀀스들로 생성된다. 이 생성된 시퀀스들과 은닉 마르코프 모델을 사용하여 정의된 각각의 행동에 적합한 사람 행동 모델과 제안된 적출 모델을 생성한다. 연속적인 사람 행동 인식은 연속적인 행동 시퀀스에서 적출 모델에 의해 의미 있는 행동과 의미 없는 행동을 분할하는 행동 적출과 의미 있는 행동 시퀀스에 대한 모델의 확률 값들을 비교하여 연속적으로 사람 행동들을 인식한다. 실험 결과를 통해 제안된 모델이 연속적인 행동 인식 시스템에서 인식 성능을 효과적으로 개선하는 것을 검증한다.

Mean-Shift의 색 수렴성과 모양 기반의 재조정을 이용한 실시간 머리 추적 알고리즘 (A Real-Time Head Tracking Algorithm Using Mean-Shift Color Convergence and Shape Based Refinement)

  • 정동길;강동구;양유경;나종범
    • 대한전자공학회논문지SP
    • /
    • 제42권6호
    • /
    • pp.1-8
    • /
    • 2005
  • 이 논문에서는 팬-틸트-줌 기능을 가지는 실시간 능동카메라 시스템에 적합한 2단계 머리 추적 알고리즘을 제안한다. 먼저, 색 수렴 단계에서는 머리의 모양을 타원으로 가정하고 모델 색-히스토그램을 얻는다. 그 후, 모델과 후보 타원의 색-히스토그램간의 유사도를 검사하여 목표 물체의 대략적인 위치를 구하기 위해 mean-shift 방법을 이용한다. 여기에서 영상 내 물체 영역의 색 분포가 카메라의 관찰 방향에 따라 달라지는 것을 고려하기 위하여, 모델 히스토그램 뿐 아니라 이전 프레임에서 얻어진 타원의 색 히스토그램도 함께 고려함으로써 mean-shift의 수렴성을 향상시킨다. 특히, 이전 프레임에서 결정된 타원 내부의 가장자리 영역에 포함되어 있는 배경 색 성분에 의한 오류 누적 문제를 해소하기 위해, 모델 히스토그램을 이용하여 타원의 크기를 적응적으로 축소함으로써 이전 추적 결과중 머리 영역에 해당되는 색 히스토그램을 얻는다. 또한 영상 내의 전역 움직임을 예측하고 이를 보상하여 정확한 초기 위치를 찾음으로써 mean-shift의 색 수렴성을 더욱 향상시킨다. 이 때, 고속 움직임 추정을 위해 1-D 투사 데이터 기반의 방법을 제안한다. 다음 단계에서는, 모양 정보를 이용하여 수렴단계에서 얻어진 타원의 위치와 크기를 보다 정확히 재조정한다. 이를 위해 영상 내 경사도의 방향에 기반한 강건한 모양 유사도 함수를 정의하고 사용한다. 다양한 환경을 고려한 실험을 통하여, 사람의 움직임이 빠른 경우, 영상 내 머리 크기의 변화가 심한 경우, 그리고 배경의 색과 모양이 매우 복잡한 경우에 대해서도 제안한 알고리즘이 비교적 정확히 추적을 수행함을 보였다. 아울러 제안한 알고리즘은 추적을 수행하는데 일반 PC에서 약 30fps의 처리 속도를 보여 실시간 시스템에 적합하다.

Real-Time 2D-to-3D Conversion for 3DTV using Time-Coherent Depth-Map Generation Method

  • Nam, Seung-Woo;Kim, Hye-Sun;Ban, Yun-Ji;Chien, Sung-Il
    • International Journal of Contents
    • /
    • 제10권3호
    • /
    • pp.9-16
    • /
    • 2014
  • Depth-image-based rendering is generally used in real-time 2D-to-3D conversion for 3DTV. However, inaccurate depth maps cause flickering issues between image frames in a video sequence, resulting in eye fatigue while viewing 3DTV. To resolve this flickering issue, we propose a new 2D-to-3D conversion scheme based on fast and robust depth-map generation from a 2D video sequence. The proposed depth-map generation algorithm divides an input video sequence into several cuts using a color histogram. The initial depth of each cut is assigned based on a hypothesized depth-gradient model. The initial depth map of the current frame is refined using color and motion information. Thereafter, the depth map of the next frame is updated using the difference image to reduce depth flickering. The experimental results confirm that the proposed scheme performs real-time 2D-to-3D conversions effectively and reduces human eye fatigue.