• 제목/요약/키워드: Motion error measurement

검색결과 217건 처리시간 0.026초

레이저 간섭계의 진직도 측정오차 보상 (Compensation of the Straightness Measurement Error in the Laser Interferometer)

  • 김경호;김태호;이후상;김승우
    • 한국정밀공학회지
    • /
    • 제22권9호
    • /
    • pp.69-76
    • /
    • 2005
  • The laser interferometer system such as HP5529A is one of the most powerful equipment fur measurement of the straightness error in precision stages. The straightness measurement system, HP5529A is composed of a Wollaston prism and a reflector. In this system, the straightness error is defined as relative lateral motion change between the prism and the reflector and computed from optical path difference of two polarized laser beams between these optics. However, rotating motion of the prism or the reflector used as a moving optic causes unwanted straightness error. In this paper, a compensation method is proposed for removing the unwanted straightness error generated by rotating the moving optic and an experiment is carried out for theoretical verification. The result shows that the unwanted straightness error becomes very large when the reflector is used as the moving optic and the distance between the reflector and the prism is far. Therefore, the prism must be generally used as the moving optic instead of the reflector so as to reduce the measurement error. Nevertheless, the measurement error must be compensated because it's not a negligible error if a rotating angle of the prism is large. In case the reflector must be used as the moving optic, which is unavoidable when the squareness error is measured between two axes, this compensation method can be applied and produces a better result.

2 차원 탐색 레이다를 위한 국부 항법 좌표계에서의 운동보상을 포함한 추적필터 (A Tracking Filter with Motion Compensation in Local Navigation Frame for Ship-borne 2D Surveillance Radar)

  • 김병두;이자성
    • 제어로봇시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.507-512
    • /
    • 2007
  • This paper presents a tracking filter with ship's motion compensation for a ship-borne radar tracking system. The ship's maneuver is described by displacement and rotational motions in the ship-centered east-north frame. The first order Taylor series approximation of the measurement error covariance of the converted measurement is derived in the ship-centered east-north frame. The ship's maneuver is compensated by incorporating the measurement error covariance of the converted measurement and displacement of the position state in the tracking filter. The simulation results via 500 Monte-Carlo runs show that the proposed method follows the target successfully and provides consistent tracking performance during ship's maneuvers while the conventional tracking filter without ship motion compensation fails to track during such periods.

초정밀 이송테이블의 5 자유도 운동오차 측정 (Measurement of Five DOF Motion Errors in the Ultra Precision Feed Tables)

  • 오윤진;박천홍;황주호;이득우
    • 한국정밀공학회지
    • /
    • 제22권11호
    • /
    • pp.135-141
    • /
    • 2005
  • Measurement of five DOF motion errors in a ultra precision feed table was attempted in this study. Yaw and pitch error were measured by using a laser interferometer and roll error was measured by using the reversal method. Linear motion errors in the vertical and horizontal directions were measured by using the sequential two point method. In this case, influence of angular motion errors was compensated by using the previously measured ones by the laser interferometer and the reversal method. The capacitive type sensors and an optical straight edge were used in the reversal method and the sequential two point method. Influence of thermal deformation on sensor jig was investgated and minimized by the periodic measurement according to the variation of room temperature. Deviation of gain between sensors was also compensated using the step response data. 5 DOF motion errors of a hydrostatic table driven by the linear motor werer tested using the measurement method. In the horizontal direction, measuring accuracies for the linear and angular motion were within ${\pm}0.02\;{\mu}m$ and ${\pm}0.04$ arcsec, respectively. In the vertical direction, they were within ${\pm}0.02{\mu}m$ and ${\pm}0.05$ arcsec. From these results, it was found that the introduced measurement method was very effective to measure 5 DOF motion errors of the ultra precision feed tables.

모아레 원리를 이용한 스핀들의 반경방향 회전정도 측정 (Measurement of Radial Error Motions of a Rotating Spindle by Moire Topography)

  • 박윤창;김승우
    • 대한기계학회논문집
    • /
    • 제17권11호
    • /
    • pp.2723-2729
    • /
    • 1993
  • Moire principles are applied to the measurement of the spindle radial error motion. As opposed to conventional techniques, no master cylinder or ball is needed in the measurement so that the offset and out-of-roundness errors of the master can be inherently eliminated. Two periodic circular gratings are used, one is made on the spindle and the other is held stationary on the reference frame. When the two gratings are seen superimposed during spindle rotation, an interference fringe pattern is observed from which the information on the eccentricity between the two gratings can be extracted with high precision. The optical design and fringe analysis techniques of a prototype measurement system are described in detail with exemplary measurement results.

주축의 회전정도 측정시스템의 개발 (Development of the Measuring System of the Rotational Accuracy of main Spindles)

  • 신영재;박종권;이후상
    • 한국기계연구소 소보
    • /
    • 통권20호
    • /
    • pp.21-26
    • /
    • 1990
  • In order to satisfy the industrial requirements to measure the rotational error motion of main spindles and to find out the source of the error motion, some measuring systems were made. Their measuring principle are based on the 3-point roundness measurement. In these measuring systems, the measurements are processed by digital calculation technique and the form error and the rotational error motion of main spindles are spearated. In the present paper, the principle of 3-point metnod is introduced and some application examples are shown.

  • PDF

디지털 영상인식 방법을 통한 자세평가 및 운동가동범위 측정시스템 개발 (Development of Posture Evaluation System through Digital Recognition Method)

  • 문영진;이순호;백진호;이종각;이건범
    • 한국운동역학회지
    • /
    • 제14권3호
    • /
    • pp.49-65
    • /
    • 2004
  • The purpose of this study is development of posture evaluation and Range of Motion(ROM) system by using digital vision analysis method. The results of this study are as follows. First, Scoliosis evaluation through this research measurement system represent 3mm error in 7 cervical point and deepest lumbar point, 0.7mm error in other point. This mean this research measurement system have a reliability for scoliosis evaluation. Second, for spine line evaluation on high fat subject, we need reconstrection spine line after measurement for fat thickness in 7 cervical point and deepest lumbar point. Third, In pedioscope error test, it present 0.01848cm in X axis and 0.01757cm in Y axis. This results mean pedioscope have a reliability foot evaluation. Forth, Posture evaluation and Range of Motion measurement system by using digital vision analysis method can fast measure in range of motion and foot evaluation and posture. therefore we can expect this system application in young people posture clinic center and hospital and so on.

레이저 간섭계를 이용한 드릴링 머신의 틸트 측정 (Tilt Measurement of Drilling Machine Using the Laser Interferometer)

  • 이승수;손영지;김순경;전언찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.479-484
    • /
    • 1996
  • This paper describes a method of measuring tilt motion. This method measures the tilt motion of drilling machines using a laser interferometer, a simple sliding linear bearing, measurement of the probe and the LSC(least square center) method. The next order of business is discussing the procedure of measurement. First, The measured position is considered to be the point of contact between the drill shank and the probe. The revolution of the drill axis delivers the point of contact to the probe. Second, because the laser interferometer is attached on the sliding linear bearing, any movement of probe influences laser reflector. Thus, the laser program displays the moving factor of laser reflector. Namely, this is tilt factor. Third. the points of measurement are a full circle which has 8 points (each are 45$^{\circ}$), After it is finished measuring the 8 points, let the spindle of the drilling machine move down about 5 cm. Repeating this procedure three times, we can get tilt motion's values which are calculated by LSC method. Many error factors affect the accurate measurement of tilt motion. However in this paper we ignore some error factors because they are less significant than tilt motion.

  • PDF

공간오차 측정을 통한 6자유도 병렬기구의 보정 (Calibration of 6-DOF Parallel Mechanism Through the Measurement of Volumetric Error)

  • 오용택;아궁 샴수딘 사라기;김정현;고태조
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.48-54
    • /
    • 2012
  • This paper introduces the kinematic calibration method to improve the positioning accuracy of a parallel mechanism. Since all the actuators in the parallel mechanism are controlled simultaneously toward the target position, the volumetric errors originated from each motion element are too complicated. Therefore, the exact evaluation of the error sources of each motion element and its calibration is very important in terms of volumetric errors. In the calibration processes, the measurement of the errors between commands and trajectories is necessary in advance. To do this, a digitizer was used for the data acquisition in 3 dimensional space rather than arbitrary planar error data. After that, the optimization process that was used for reducing the motion errors were followed. Consequently, Levenberg-Marquart algorithm as well as the error data acquisition method turned out effective for the purpose of the calibration of the parallel mechanism.

해양시스템 모형실험을 위한 수중운동계측시스템 개발 연구 (Development of Underwater Motion Measurement System for Model Test of Ocean System)

  • 최종수;홍섭
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.166-172
    • /
    • 2004
  • An underwater motion measurement system was constructed for applications to the model basin. A commercial motion capture system, FALCON of Motion Analysis Corp., which corrects automatically the distortion caused by refraction of the light passing through water and air, was adopted for underwater motion measurement. The modifications of FALCON system were performed: waterproofing camera housings, markers, connectors, and a new blue ring lighter. the accuracy of the motion measurement was obtained within the calibration error of 0.87mm in average and 0.89mm in standard deviation for the distance of 500mm between two markers on the calibration device. the volume of $2100mm(length)\times2100mm(breadth)\times2300mm(Height)$ was covered with 4 cameras of the underwater motion measurement system. For the performance verification, motion measurement test of a vertical mooring chain model excited at the top end was carried out. The 3D motions of mooring model were measured with variable amplitude and period of the forced excitation. Higher order motions of the mooring model were observed as the excitation period decreases. the performance of the system was verified by successfully measuring 3D motion of mooring model.

  • PDF