• Title/Summary/Keyword: Motion Compensation

Search Result 583, Processing Time 0.032 seconds

A Context-based Fast Encoding Quad Tree Plus Binary Tree (QTBT) Block Structure Partition

  • Marzuki, Ismail;Choi, Hansol;Sim, Donggyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.175-177
    • /
    • 2018
  • This paper proposes an algorithm to speed up block structure partition of quad tree plus binary tree (QTBT) in Joint Exploration Test Model (JEM) encoder. The proposed fast encoding of QTBT block partition employs three spatially neighbor coded blocks, such as left, top-left, and top of current block, to early terminate QTBT block structure pruning. The propose algorithm is organized based on statistical similarity of those spatially neighboring blocks, such as block depths and coded block types, which are coded with overlapped block motion compensation (OBMC) and adaptive multi transform (AMT). The experimental results demonstrate about 30% encoding time reduction with 1.3% BD-rate loss on average compared to the anchor JEM-7.1 software under random access configuration.

  • PDF

Dynamic Modeling-based Flight P-PD Controller Applied to a Quadrotor

  • Jin, Tae-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_1
    • /
    • pp.513-519
    • /
    • 2022
  • In this paper, we describe performances of P-PD controllers in the quadrotor system with steady-state error compensation by adding a corrective term to the system input. A decentralized control system using P-PD controllers was successfully implemented on a quadrotor platform. We also presented the results of a mathematical modeling analysis for control the quadrotor and experimental results for each response performance according to the heading reference value in accordance with the mathematical modeling and P-PD controller design. A control experiment with the real system was implemented for the test platform, and the results were evaluated and compared.

Adaptive Linear Predictive Coding of Time-varying Images Using Multidimensional Recursive Least-squares Ladder Filters

  • Nam Man K.;Kim Woo Y.
    • Journal of the military operations research society of Korea
    • /
    • v.13 no.1
    • /
    • pp.1-18
    • /
    • 1987
  • This paper presents several adaptive linear predictive coding techniques based upon extension of recursive ladder filters. A 2-D recursive ladder filter is extended to a 3-D case which can adaptively track the variation of both spatial and temporal changes of moving images. Using the 2-D/3-D ladder filter and a previous farme predictor, two types of adaptive predictor-control schemes are proposed in which the prediction error at each pel can be obtained at or close to a minimum level. We also investigate several modifications of the basic encoding methods. Performance of the 2-D/3-D ladder filters, their adaptive control schemes, and variations in coding methods are evaluated by computer simulations on a real sequence and compared to the results of motion compensation and frame differential coders. As a validity test of the ladder filters developed, the error signals for the different predictors are compared and evaluated.

  • PDF

3D Motion Estimation and Compensation method for Point cloud video codec by 3D DCT (3D DCT 를 이용한 포인트 클라우드의 움직임 예측/보상 기법)

  • Lee, Minseok;Kim, Boyeun;Yoon, Sangeun;Hwang, Yonghae;Kim, Junsik;Kim, Khuheon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.279-282
    • /
    • 2021
  • 포인트 클라우드는 3 차원 물체를 표현하기 위한 점들의 집합으로, 동적인 3 차원 데이터를 정밀하게 획득할 수 있기에 이의 효율적인 압축의 필요성이 대두되고 있다. 기존 3D DCT(3D Discrete Cosine Transform)를 이용한 동적 객체의 포인트 클라우드 압축 방식은 Inter 프레임 압축을 고려하지 않아 압축시의 데이터 압축률에 한계가 있다. 따라서 본 논문은 이러한 문제점을 개선하기 위해 3D DCT 를 이용한 움직임 예측을 통하여 포인트 클라우드 영상의 I 프레임 및 P 프레임을 압축하는 방식을 제안한다.

  • PDF

Efficient Coding of Motion Vector and Mode Information for H.264/AVC (H.264/AVC에서 효율적인 움직임 벡터와 모드 정보의 압축)

  • Lee, Dong-Shik;Kim, Young-Mo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.10
    • /
    • pp.1359-1365
    • /
    • 2008
  • The portion of header in H.264 gets higher than those of previous standards instead of its better compression efficiency. Therefore, this paper proposes a new technique to compress the header of H.264. Unifying a sentence elementary in H.264, H.264 does not consider the distribution of element which be encoded and uses existing Exp-Golomb method, but it is uneffective for variable length coding. Most of the header are block type(s) and motion vector difference(s), and there are redundancies in the header of H.264. The redundancies in the header of H.264 which are analyzed in this paper are three. There are frequently appearing symbols and non-frequently appearing symbols in block types. And when mode 8 is selected in macroblock, all of four sub-macroblock types are transferred. At last, same values come in motion vector difference, especially '0.' This paper proposes the algorithm using type code and quadtree, and with them presents the redundant information of header in H.264. The type code indicates shape of the macroblock and the quadtree does the tree structured motion compensation. Experimental results show that proposed algorithm achieves lower total number of encoded bits over JM12.4 up to 32.51% bit reduction.

  • PDF

Analysis of MPEG-4 Encoder for Object-based Video (실시간 객체기반 비디오 서비스를 위한 MPEG-4 Encoder 분석)

  • Kim Min Hoon;Jang Euee Seon;Lee Sun young;Moon Seok ju
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.1
    • /
    • pp.13-20
    • /
    • 2004
  • In this paper, we have analyzed the current MPEG-4 video encoding tools and proposed efcient coding techniques that reduce the complexity of the encoder. Until recently, encoder optimization without shape coding has been a major concern in video for wire/wireless low bit rate coding services. Recently, we found out that the computational complexity of MPEG-4 shape coding plays a very important role in the object-based coding through experiments. We have made an experiment whether we could get optimized object-based coding method through successfully combining latest optimized texture coding techniques with our proposed optimized shape coding techniques. In texture coding, we applied the MVFAST method for motion estimation. We chose not to use IVOPF(Intelligent VOP Formation) but to use TRB(Tightest Rectangular Boundary) for positioning VOP and, finally, to eliminate the spiral search of shape motion estimation to reduce the complexity in shape coding. As a result of experiment, our proposed scheme achieved improved time complexity over the existing reference software by $57.3\%$ and over the optimized method on which only shape coding was applied by $48.7\%$, respectively.

Exploitation of Auxiliary Motion Vector in Video Coding for Robust Transmission over Internet (화상통신에서의 오류전파 제어를 위한 보조모션벡터 코딩 기법)

  • Lee, Joo-Kyong;Choi, Tae-Uk;Chung, Ki-Dong
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.571-578
    • /
    • 2002
  • In this paper, we propose a video sequence coding scheme called AMV (Auxiliary Motion Vector) to minimize error propagation caused by transmission errors over the Internet. Unlike the conventional coding schemes the AMY coder, for a macroblock in a frame, selects two best matching blocks among several preceding frames. The best matching block, called a primary block, is used for motion compensation of the destination macroblock. The other block, called an auxiliary block, replaces the primary block in case of its loss at the decoder. When a primary block is corrupted or lost during transmission, the decoder can efficiently and simply suppress error propagation to the subsequent frames by replacing the block with an auxiliary block. This scheme has an advantage of reducing both the number and the impact of error propagations. We implemented the proposed coder by modifying H.263 standard coding and evaluated the performance of our proposed scheme in the simulation. The simulation results show that AMV coder is more efficient than the H.263 baseline coder at the high packet loss rate.

Airborne Pulsed Doppler Radar Development (비행체 탑재 펄스 도플러 레이다 시험모델 개발)

  • Kwag, Young-Kil;Choi, Min-Su;Bae, Jae-Hoon;Jeon, In-Pyung;Yang, Ju-Yoel
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.2
    • /
    • pp.173-180
    • /
    • 2006
  • An airborne radar is an essential aviation electronic system of the aircraft to perform various missions in all weather environments. This paper presents the design, development, and test results of the multi-mode pulsed Doppler radar system test model for helicopter-borne flight test. This radar system consists of 4 LRU units, which include ANTU(Antenna Unit), TRU(Tx Rx Unit), RSDU(Radar Signal & Data Processing Unit) and DISU(Display Unit). The developed technologies include the TACCAR processor, planar array antenna, TWTA transmitter, coherent I/Q detector, digital pulse compression, DSP based Doppler FFT filtering, adaptive CFAR, IMU, and tracking capability. The design performance of the developed radar system is verified through various helicopter-borne field tests including MTD (Moving Target Detector) capability for the Doppler compensation due to the moving platform motion.

  • PDF

Multiview Video Sequence CODEC with View Scalability (View Scalability를 고려한 다시점 동영상 코덱)

  • 임정은;손광훈
    • Journal of Broadcast Engineering
    • /
    • v.9 no.3
    • /
    • pp.236-245
    • /
    • 2004
  • A multiview sequence CODEC with view scaiability is proposed in this paper. We define a GGOP (Group of GOP) structure as a basic coding unit to efficiently code multiview sequences. 7he proposed CODEC provides flexible GGOP structures based on the number of views and baseline distances among cameras. Multiview sequences encode consists of disparity estimation/compensation, motion estimation/compensation, residual coding and rate control and generates multiview sequence bitstream. The main bitstream is the same as an MPEG-2 mono-sequence bitstream for MPEG-2 compatibility. The auxiliary bitstream contains information concerning the remaining multiview sequences except for the reference sequences. The proposed CODEC with view scalability provides that a number of view flints are selectively determined at the receiver according to the type of display modes. The proposed multiview sequence CODEC is tested with several multiview sequences to determine its flexibility. compatibility with MPEG-2 and view scaiability. In addition, we subjectively confirm that the decoded bitstreams with view scaiability can be Properly displayed by several types of display modes. including 3D monitors.

Mega Irises: Per-Pixel Projection Illumination Compensation for the moving participant in projector-based visual system (Mega Irises: 프로젝터 기반의 영상 시스템상에서 이동하는 체험자를 위한 화소 단위의 스크린 투사 밝기 보정)

  • Jin, Jong-Wook;Wohn, Kwang-Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.4
    • /
    • pp.31-40
    • /
    • 2011
  • Projector-based visual systems are widely used for VR and experience display applications. But the illumination irregularity on the screen surface due to the screen material and its light reflection properties sometimes deteriorates the user experience. This phenomenon is particularly troublesome when the participants of the head tracking VR system such as CAVE or the motion generation experience system continually move around the system. One of reason to illumination irregularity is projector-screen specular reflection component to participant's eye's position and it's analysis needs high computation complexity. Similar to calculate specular lighting term using GPU's programmable shader, Our research adjusts every pixel's brightness in runtime with given 3D screen space model to reduce illumination irregularity. For doing that, Angle-based brightness compensate function are considered for specific screen installation and modified it for GPU-friendly compute and access. Two aspects are implemented, One is function access transformation from angular form to product and the other is piecewise linear interpolate approximation.