• Title/Summary/Keyword: Motion Behavior

Search Result 1,493, Processing Time 0.023 seconds

Numerical Study on the Development of the Seismic Response Prediction Method for the Low-rise Building Structures using the Limited Information (제한된 정보를 이용한 저층 건물 구조물의 지진 응답 예측 기법 개발을 위한 해석적 연구)

  • Choi, Se-Woon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.271-277
    • /
    • 2020
  • There are increasing cases of monitoring the structural response of structures using multiple sensors. However, owing to cost and management problems, limited sensors are installed in the structure. Thus, few structural responses are collected, which hinders analyzing the behavior of the structure. Therefore, a technique to predict responses at a location where sensors are not installed to a reliable level using limited sensors is necessary. In this study, a numerical study is conducted to predict the seismic response of low-rise buildings using limited information. It is assumed that the available response information is only the acceleration responses of the first and top floors. Using both information, the first natural frequency of the structure can be obtained. The acceleration information on the first floor is used as the ground motion information. To minimize the error on the acceleration history response of the top floor and the first natural frequency error of the target structure, the method for predicting the mass and stiffness information of a structure using the genetic algorithm is presented. However, the constraints are not considered. To determine the range of design variables that mean the search space, the parameter prediction method based on artificial neural networks is proposed. To verify the proposed method, a five-story structure is used as an example.

Dynamic Instability and Multi-step Taylor Series Analysis for Space Truss System under Step Excitation (스텝 하중을 받는 공간 트러스 시스템의 멀티스텝 테일러 급수 해석과 동적 불안정)

  • Lee, Seung-Jae;Shon, Su-Deok
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.289-299
    • /
    • 2012
  • The goal of this paper is to apply the multi-step Taylor method to a space truss, a non-linear discrete dynamic system, and analyze the non-linear dynamic response and unstable behavior of the structures. The accurate solution based on an analytical approach is needed to deal with the inverse problem, or the dynamic instability of a space truss, because the governing equation has geometrical non-linearity. Therefore, the governing motion equations of the space truss were formulated by considering non-linearity, where an accurate analytical solution could be obtained using the Taylor method. To verify the accuracy of the applied method, an SDOF model was adopted, and the analysis using the Taylor method was compared with the result of the 4th order Runge-Kutta method. Moreover, the dynamic instability and buckling characteristics of the adopted model under step excitation was investigated. The result of the comparison between the two methods of analysis was well matched, and the investigation shows that the dynamic response and the attractors in the phase space can also delineate dynamic snapping under step excitation, and damping affects the displacement of the truss. The analysis shows that dynamic buckling occurs at approximately 77% and 83% of the static buckling in the undamped and damped systems, respectively.

Behavior Characteristics of Micropile Following the Embedded Condition (근입조건에 따른 마이크로파일의 거동특성)

  • Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.6
    • /
    • pp.19-25
    • /
    • 2020
  • In the recent downtown works, there are frequent cases where the work on existing piles is impossible due to the influence from lack of space and surrounding environment. In such cases, there has been growing cases of using the micropile method that is available to work with the small equipment and asserts the bearing capacity of the existing piles. The micropile method is a type of drilled shaft with the diameter of a pile to be around 75 mm~300 mm that, even for a case where it has certain surrounding structure, foundation and spatial obstacle, there is almost no work difficulty and the work is feasible under all types of soil conditions. In addition, the work can be done in places where the ceiling of the building is low with less vibration and noise in the work process that such method is significantly used for foundation reinforcement of existing buildings. With respect to the motion characteristics that are changed depending on the foundational characteristics or when the micropile is applied with compression or tensile force, there is very few studies conducted. Therefore, under this study, through the data analysis of the field loading test regarding the micropile worked in the fields, it clarifies the settlement and characteristics of bearing capacity following the embedded condition of the ingredients and piles that consist the foundation if the compression and tensile force are applied to the micropile, and by facilitating the statistical analysis program, SAS, to carry out the analysis on the main elements influencing on settlement of the micropile and bearing capacity.

A Study on Magnitude Scaling Factors and Screening Limits of Liquefaction Potential Assessment in Moderate Earthquake Regions (중진지역에 적합한 액상화 평가 생략기준 및 지진규모 보정계수에 관한 연구)

  • Park Keun-Bo;Park Young-Geun;Choi Jae-Soon;Kim Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.127-140
    • /
    • 2004
  • Conventional methods for the assessment of liquefaction potential were primarily for areas of severe earthquake zones (M=7.5) such as North America and Japan. Detailed earthquake related researches in Korea started in 1997, including development of the seismic design standards for port and harbour structures, which was later completed in 1999. Because most contents in the guidelines were quoted through literature reviews from North America and Japan, which are located in strong earthquake region, those are not proper in Korea, a moderate earthquake region. This requires further improvement of the present guidelines. Considering earthquake hazard data in Korea, use of laboratory tests based on irregular earthquake motion appears to be effective to reflect the dynamic characteristics of soil more realistically than those using simplified regular loading. In this study, cyclic triaxial tests using irregular earthquake motions are performed with different earthquake magnitudes, relative densities, and fines contents. Assessment of liquefaction potential in moderate earthquake regions is discussed based on various laboratory test results. Effects of these components on dynamic behavior of soils are discussed as well. From the test results, screening limits and magnitude scaling factors to determine the soil liquefaction resistance strength in seismic design were re-investigated and proposed using normalized maximum stress ratios under real irregular earthquake motions.

Debris Flow Mobility: A Comparison of Weathered Soils and Clay-rich Soils (풍화토와 점성토 위주의 토석류 거동과 유동특성)

  • Jeong, Sueng-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.23-27
    • /
    • 2013
  • The risks of debris flows caused by climate change have increased significantly around the world. Recently, landslide disaster prevention technology is more focused on the failure and post-failure dynamics to mitigate the hazards in flow-prone area. In particular, we should define the soil strength and flow characteristics to estimate the debris flow mobility in the mountainous regions in Korea. To do so, we selected known ancient landslides area: Inje, Pohang and Sangju debris flows. Firstly we measured physical and mechanical properties: liquidity index and undrained shear strength by fall cone penetrometer. From the test results, we found that there is a possible relationship between liquidity index and undrained shear strength, $C_{ur}=(1.2/I_L)^{3.3}$, in the selected areas, even though they were different in geological compositions. Assuming that the yield stress is equal to the undrained shear strength at the initiation of sliding, we examined the flow characteristics of weathered soils in Korea. When liquidity index is given as 1, 1.5 and 3.0, the debris flow motion of weathered soils is compared with that of mud-rich sediments, which are known as low-activity clays. At $I_L=1$, it seems that debris flow could reach approximately 250m after 5 minutes. As liquidity index increased from 1 to 3, the debris flow propagation of weathered soils is twice than that of low-activity clays. It may be due to the fact that soil masses mixed with the ambient water and then highly fragmented during flow, thereby leading to the high mobility. The results may help to predict the debris flow propagation and to develop disaster prevention technology at similar geological settings, especially for the weathered soils, in Korea.

Seismic Behavior and Estimation for Base Isolator Bearings with Self-centering and Reinforcing Systems (자동복원 및 보강 시스템과 결합된 면진받침의 지진거동과 평가)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1025-1037
    • /
    • 2015
  • Flexible base isolation bearings that separate superstructure from ground have been widely used in the construction field because they make a significant contribution to increasing the fundamental period of the structure, thereby decreasing response acceleration transmitted into the superstructure. However, the established bearing devices installed to uphold the whole building give rise to some problems involved with failure and collapse due to lack of the capacity as modern structures are getting more massive and higher. Therefore, this study suggests new isolation bearings assembled with additional restrainers enabled to reinforcing and recentering, and then evaluates their performance to withstand the seismic load. The superelastic shape memory alloy (SMA) bars are installed into the conventional lead-rubber bearing (LRB) devices in order to provide recentering forces. These new systems are modeled as component spring models for the purpose of conducting nonlinear dynamic analyses with near fault ground motion data. The LRB devices with steel bars are also designed and analyzed to compare their responses with those of new systems. After numerical analyses, ultimate strength, maximum displacement, permanent deformation, and recentering ratio are compared to each model with an aim to investigate which base isolation models are superior. It can be shown that LRB models with superelastic SMA bars are superior to other models compared to each other in terms of seismic resistance and recentering effect.

Effects of the Ergonomic Lap Board for Computer Mouse Padding on Upper Limb Movements, Myoelectric Activities, Task Performance, and Subjective Discomfort (인체공학적 랩보드를 이용한 컴퓨터 마우스 사용이 상지의 움직임 및 근활성도, 작업수행도, 주관적 불편도에 미치는 영향)

  • Park, So-Yeon;Lee, Taek-Young;Yi, JinBock
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.2
    • /
    • pp.348-358
    • /
    • 2013
  • This study aimed to investigate the effect of a lap board that was developed to prevent musculoskeletal disorders caused by the use of a computer mouse. Study participants were 10 college students in their 20s who did not have any musculoskeletal symptoms. We analyzed the difference in upper limb movements, electromyographic activity, task performance, and subjective discomfort between 2 conditions: use of a mouse with the lap board and use of a mouse placed on a desk. Results of behavior analysis showed that there was a significant difference between the 2 conditions in terms of the average angle of shoulder flexion, shoulder internal rotation, and forearm pronation(p< 0.05). However, electromyographic activity, task performance, and subjective discomfort showed no significant differences between the 2 conditions. When subjects used the mouse with the lap board, their upper extremity was located much closer to the torso than when they used the mouse placed on the desk. Six of 10 participating students preferred the lap board. We expect that advanced research on prevention of musculoskeletal disorders due to the use of the computer mouse will be conducted in the near future.

Sliding Wear Properties of Graphite as Sealing Materials for Cut off Hot Gas (고온차단 기밀용 그라파이트의 고온 미끄럼마모 특성 평가)

  • Kim, YeonWook;Kim, JaeHoon;Yang, HoYeong;Park, SungHan;Lee, HwanKyu;Kim, BumKeun;Lee, SeungBum;Kwak, JaeSu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1349-1354
    • /
    • 2013
  • Sealing structure to prevent flowing hot gas into the driving device, located between the driving shaft and the liner of On-Off valve for controlling the hot gas flow path was studied. Wear occurs due to the constant movement of the driving shaft controlled by actuator on graphite as the sealing material. In this paper, the dynamic wear behavior in high temperature of graphite(HK-6) to be used as sealing material was evaluated. Reciprocating wear test was carried out for the graphite(HK-6) to the relative motion between shaft materials(W-25Re). The results of friction coefficient and specific wear rate according to contact load, sliding speed at room temperature and $485^{\circ}C$ considering the actual operating environment were evaluated. Through the SEM analysis of the worn surface, third body as lubricant films were observed and lubricant effect of third body was considered.

The Prediction System of Emotional Reaction to Gaits Using MAX SCRIPT (맥스 스크립트를 이용한 감성적 걸음걸이 예측 시스템)

  • Jeong, Jae-Wook
    • Science of Emotion and Sensibility
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • A perceptual reaction to human being's gaits has "regularity" that possibly obtains sympathy among people. This thesis is in the vein of the study that performs the research on the quantificational extraction of the regularity, reconstitute the result, and apply it to controlling behavior. The purpose of this thesis lies in assuring the validity of the future research by demonstrating the following hypothesis: when the physical numerical values of the gait "A" whose perceptual reaction is "a" and those of the gait "B" whose perceptual reaction is "b" are arbitrarily blended, the perceptual reaction to this blended gait also corresponds to the blend of "a" and "b", "a/b". I blended the samples of two types of gaits in the form of Bipeds using the EAM made by 3D Studio Max Script. Blending outcomes were obtained successfully for four times out of the six tries in total. It implies that without utilizing other methods such as Motion Capturing, the basic Bipeds data itself has an enough capability to generate various gaits of Bipeds. Although the present research targets only the Bipeds samples equipped with the 1Cycle moving condition of arms and legs, I acknowledge that a tool that makes blending possible under various moving conditions is necessary for a completed system.

  • PDF

Study on Temporomandibular Disorder Patients with Conservative Treatment (보존적 치료를 이용한 TMD 환자에 관한 연구)

  • Ko, Myung-Yun;Kim, Jin-Hwa;Heo, Jun-Young;Ok, Soo-Min;Jeong, Sung-Hee;Ahn, Yong-Woo
    • Journal of Oral Medicine and Pain
    • /
    • v.38 no.1
    • /
    • pp.77-86
    • /
    • 2013
  • In order to evaluate the effect of conservative treatment for Temporomandibular Disorders(TMD), 137 patients were subjected at the Department of Oral Medicine, Pusan National University Dental Hospital from June 2012 to Sept. 2012. They were treated conservatively with behavioral therapy, physical therapy, medication and occlusal stabilizing splint therapy. Subjective symptoms and clinical findings were investigated to evaluate and compare the patients' status after 3 months treatment. The results were as follows; 1. Pain, Noise, LOM(Limitation of motion) and MCO(Maximum comfortable opening) measurements of TMD were markedly improved after conservative treatments including behavior therapy, physical therapy, medication and splint therapy. 2. There was no difference in treatment outcomes after conservative treatments when the subjects were classified and compared according to gender and chronicity. 3. Conservative treatment including stabilization splint produced better results than physical therapy with medication. 4. After 3 months of treatment, pain and LOM were significantly improved in the MD(Muscle disorder) group. Pain, LOM and noise were significantly improved in the DD(Disc displacements) group. In the OA(Osteoarthritis) group, pain, noise, LOM and MCO were significantly improved.