• Title/Summary/Keyword: Morse theory

Search Result 14, Processing Time 0.021 seconds

ATTRACTORS OF LOCAL SEMIFLOWS ON TOPOLOGICAL SPACES

  • Li, Desheng;Wang, Jintao;Xiong, Youbing
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.773-791
    • /
    • 2017
  • In this paper we introduce a notion of an attractor for local semiflows on topological spaces, which in some cases seems to be more suitable than the existing ones in the literature. Based on this notion we develop a basic attractor theory on topological spaces under appropriate separation axioms. First, we discuss fundamental properties of attractors such as maximality and stability and establish some existence results. Then, we give a converse Lyapunov theorem. Finally, the Morse decomposition of attractors is also addressed.

Density Functional Theory for Calculating the OH Stretching Frequency of Water Molecules

  • Jeon, Kiyoung;Yang, Mino
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.6
    • /
    • pp.410-414
    • /
    • 2016
  • The anharmonic frequency of a local OH stretching mode of a water monomer and dimer was calculated using various levels of density functional theory. The quantum chemical potential energy curves as a function of the OH bond distance were calculated, and they were fitted with the Morse potential function to analytically obtain the fundamental transition frequency. By comparing those values with the frequencies similarly calculated using an ab initio quantum chemical method, the coupled cluster theory including both single and double excitations with the perturbative inclusion of triple excitation in the complete basis limit, the accuracy of various density functional methods in the calculation of anharmonic vibration frequency of water molecules was assessed. For a water monomer, X3LYP and B3LYP methods give the best accuracy, whereas for a water dimer, B972, LCBLYP, ${\omega}B97X$, ${\omega}B97$ methods show the best performance.

Sound Propagation in Circular Duct Lined with Elastic Porous Noise Control Materials (소음제어용 탄성다공물질이 대어진 원형덕트 내의 음파전달)

  • 정인화;강연준
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.302-309
    • /
    • 1999
  • In this paper, a circular lined-duct is modeled by using an axisymmetric foam finite element, which is based on elastic porous material theory of Biot. For various thicknesses of three kinds of lining materials, finite element predictions are compared with measurement results and Morse's analytical results. While the analytical model has larger error as the lining becomes thicker, results of the present model have a good agreement with experimental results for all the thicknesses considered here. It has also been found that constraining the axial motion on the circumferential surface of the lining enhances sound attenuation at low freqneucies.

  • PDF