References
-
Y. D. Chai, A new lower bound for the integral of the (n-2)nd mean curvature over the boundary of a compact domain in
$-\mathbb-R}}^n$ , Differential Geom. Appl. 7 (1997), no. 1, 35-40. https://doi.org/10.1016/S0926-2245(96)00028-9 -
Y. D. Chai and G. Kim, A Characterization of compact sets in
$-\mathbb-R}}^n$ and its Application to a geometric inequality, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 17 (2010), no. 4, 543-553. - S. S. Chern, Global differential geometry, MAA 27 (1989), 303-350.
- H. Flanders, A proof of Minkowski's inequality for convex curves, Amer. Math. Monthly 75 (1968), 581-593. https://doi.org/10.1080/00029890.1968.11971034
- M. Gromov, Hyperbolic manifolds, group and actions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), pp. 183-213, Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, N.J., 1981.
- J. Milnor, Morse Theory, Annals of Mathematics Studies, No. 51 Princeton University Press, Princeton, N. J., 1963.
- Polya and Szego, Isoperimetric inequalities in mathematical physics, Annals of Mathematics Studies, no. 27, Princeton University Press, Princeton, N. J., 1951.
- A. Ros, Compact hypersurfaces with constant higher order mean curvatures, Rev. Mat. Iberoamericana 3 (1987), no. 3-4, 447-453. https://doi.org/10.4171/RMI/58
- L. A. Santalo, Integral Geometry and Geometric Probability, Addison-Wesley Publishing Co., 1976.
- J. P. Sha, p-convex Riemannian manifolds, Invent. Math. 83 (1986), no. 3, 437-447. https://doi.org/10.1007/BF01394417
- F. A. Valentine, Convex Sets, Mcgraw-Hill Book Co., 1964.