Browse > Article
http://dx.doi.org/10.4134/BKMS.b160093

A GEOMETRIC INEQUALITY ON A COMPACT DOMAIN IN ℝn  

Chai, Young Do (Department of Mathematics College of Natural Sciences Sungkyunkwan University)
Cho, Yong Seung (Division of Mathematical and Physical Science College of Natural Sciences Ewha Womans University)
Publication Information
Bulletin of the Korean Mathematical Society / v.55, no.1, 2018 , pp. 1-8 More about this Journal
Abstract
In this paper, we study some topological structure of a compact domain in ${\mathbb{R}}^n$ in terms of the curvature conditions and develop a geometric inequality involving the volume and the integral of mean curvatures over the boundary of the compact domain.
Keywords
C(o)-compact domain; Morse theory; Euler characteristic; focal point; cell complex; homology sequence; integral of mean curvature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. D. Chai, A new lower bound for the integral of the (n-2)nd mean curvature over the boundary of a compact domain in $-\mathbb-R}}^n$, Differential Geom. Appl. 7 (1997), no. 1, 35-40.   DOI
2 Y. D. Chai and G. Kim, A Characterization of compact sets in $-\mathbb-R}}^n$ and its Application to a geometric inequality, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 17 (2010), no. 4, 543-553.
3 S. S. Chern, Global differential geometry, MAA 27 (1989), 303-350.
4 H. Flanders, A proof of Minkowski's inequality for convex curves, Amer. Math. Monthly 75 (1968), 581-593.   DOI
5 A. Ros, Compact hypersurfaces with constant higher order mean curvatures, Rev. Mat. Iberoamericana 3 (1987), no. 3-4, 447-453.   DOI
6 M. Gromov, Hyperbolic manifolds, group and actions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), pp. 183-213, Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, N.J., 1981.
7 J. Milnor, Morse Theory, Annals of Mathematics Studies, No. 51 Princeton University Press, Princeton, N. J., 1963.
8 Polya and Szego, Isoperimetric inequalities in mathematical physics, Annals of Mathematics Studies, no. 27, Princeton University Press, Princeton, N. J., 1951.
9 L. A. Santalo, Integral Geometry and Geometric Probability, Addison-Wesley Publishing Co., 1976.
10 J. P. Sha, p-convex Riemannian manifolds, Invent. Math. 83 (1986), no. 3, 437-447.   DOI
11 F. A. Valentine, Convex Sets, Mcgraw-Hill Book Co., 1964.